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Abstract

The problem of clustering with constraints is receiv-
ing increasing attention. Many existing algorithms as-
sume the specified constraints are correct and consis-
tent. We take a new approach and model the uncer-
tainty of constraints in a principled manner by treat-
ing the constraints as random variables. The effect of
specified constraints on a subset of points is propagated
to other data points by biasing the search for cluster
boundaries. By combining the a posteriori enforcement
of constraints with the log-likelihood, we obtain a new
objective function. An EM-type algorithm derived by
variational method is used for efficient parameter esti-
mation. Experimental results demonstrate the useful-
ness of the proposed algorithm. In particular, our ap-
proach can identify the desired clusters even when only
a small portion of data participates in constraints.

1 Introduction

The goal of (partitional) clustering [8] is to discover the
“intrinsic” grouping of a data set without any class la-
bels. Clustering is an ill-posed problem because the ab-
sence of class labels obfuscates the goal of analysis: what
is the proper definition of “intrinsic”? In some applica-
tions, however, there is a preference for certain cluster-
ing solutions. This preference or extrinsic information is
often referred to as side-information. Examples include
alternative metrics between objects, orthogonality to a
known partition, additional labels or attributes, rele-
vance of different features and ranks of the objects.

Perhaps the most natural type of side-information
in clustering is a set of constraints, which specify the
relationship between cluster labels of different objects.
Constraints are naturally available in many clustering
applications. For instance, in image segmentation
one can have partial grouping cues for some regions
of the image to assist in the overall clustering [20].
Clustering of customers in market-basket database can
have multiple records pertaining to the same person.
In video retrieval tasks different users may provide
alternative annotations of images in small subsets of
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Figure 1: A counter-intuitive clustering solution with
pairs (x1, x2) and (x3, x4) in must-link constraints. The
cluster labels of the neighbors of x2 and x3 are different
from those of x2 and x3. This is the consequence of
computing cluster labels instead of cluster boundaries.

a large database [2]; such groupings may be used for
semi-supervised clustering of the entire database.

A pairwise must-link/positive constraint corre-
sponds to the requirement that two objects should
be placed in the same cluster. A pairwise must-not-
link/negative constraint, on the contrary, means that
two objects should be placed in different clusters. Pos-
itive constraints tend to be more informative, and the
experimental results in [17] suggest that negative con-
straints only help the clustering results marginally, at
the expense of increased computation. Therefore, in this
paper we shall focus on positive constraints, though neg-
ative constraints can also be incorporated in our model
[14]. Note that clustering with constraints is different
from learning with unlabelled data, because constraints
only specify the relative relationship between labels.

It is important that the effect of constraints be
propagated: not only the labels of points involved
with constraints should be affected, but also their
neighbors [12]. Without this, one can obtain a weird
clustering solution, as shown in Figure 1. This intuitive
requirement of constraint propagation, unfortunately,
is not satisfied by many existing approaches, which
estimate the cluster labels directly. Our algorithm
instead searches for cluster boundaries that are most
consistent with the constraints and the data.

Different algorithms have been proposed for clus-
tering with constraints. COBWEB and k-means with
constraints were proposed in [18] and [19], respectively.
Spectral clustering has also been modified to work with
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constraints [11, 20]. Metric-learning and clustering with
constraints in k-means were considered simultaneously
in [4], and was extended to a Hidden Markov random
field formulation in [3]. Correlation clustering [1] uses
only constraints for clustering. Coordinated conditional
information bottleneck [6] discovers novel cluster struc-
ture in a data set.

We earlier had proposed a graphical model to repre-
sent constraints in model-based clustering [13]. In this
paper, we extend that model by (i) incorporating a pos-
terior term in the objective function that corresponds to
the enforcement of constraints, (ii) introducing tradeoff
parameters of such terms as the strengths of constraints,
and (iii) deriving an EM-like algorithm for parameter
estimation based on variational method.

2 Method

Let Y = {y1, . . . ,yN} be the set of d-dimensional data
to be clustered by mixture model-based clustering [5]
with K clusters. Let zi ∈ {1, 2, . . . , K} be the iid (hid-
den) cluster label of yi, and let qj(.|θj) be the probabil-
ity distribution of the j-th component with parameter
θj , which is assumed to be Gaussian. Extensions to
other type of component distributions are straightfor-
ward. Let αj be the prior probability of the j-th cluster.
Consider group constraints, a generalization of pairwise
constraints, where multiple data points (possibly more
than two) are constrained to be in the same cluster. Let
wl be the cluster label of the l-th constraint group, with
L as the total number of groups. The random variable
zi takes the value of wl when the constraint on yi is
enforced. Introduce the random variable vi, which cor-
responds to the constraint on yi. When it is “on” (non-
zero), the constraint is enforced, i.e., zi = wl. When it
is “off” (zero), the constraint is disabled, and zi is dis-
tributed independently according to its prior probabili-
ties. The probability that the constraint is “on” corre-
sponds to the certainty of the constraint. For example,
to represent the constraints for the data in Figure 3, we
should assign y1,y2,y3,y4 to the first group and y5,y6

to the second group. Since there are two groups, L = 2.
If we assume the confidence of all the constraints to be
0.5, the first group constraint is represented by setting
the parameters γi2 = 0 and γi1 = 0.5 for i = 1, 2, 3, 4,
whereas the second group constraint is represented by
γi1 = 0 and γi2 = 0.5 for i = 5, 6. The meaning of γil

will be defined shortly after.
The presence of constraints introduces dependence

only among zi. Different yi are still independent given
zi. Therefore, our model can be factorized as

P (Y) =
∑
z,v,w

(∏

i

P (yi|zi)P (zi|vi,w)P (vi)
) L∏

l=1

P (wl).
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Figure 3: An example set of constraints. Points that
should be put in the same cluster are joined by lines.

The rest of the model is specified as follows:

P (wl = j) = αj , 1 ≤ l ≤ L, 1 ≤ j ≤ K,

P (vi = l) = γil, 1 ≤ i ≤ N, 1 ≤ l ≤ L,

P (zi = j|vi,w) =

{
αj if vi = 0
δwl,j if vi = l

,

P (yi|zi = j) = qj(yi),

(2.1)

where z = (z1, . . . , zn), v = (v1, . . . , vn) and w =
(w1, . . . , wL) are the hidden variables. Here, γil denotes
the probability that the constraint of tying yi to the
l-th group is “on”. The values of γil are either specified
by the user to represent the confidence of different con-
straints, or they can be set to 0.5 when the certainties
of the constraints are unknown. An example of such a
model with seven data points and three group labels is
shown in Figure 2. The model in [17] is a special case
of this model when all γil are binary.

An EM algorithm can be derived to learn the
parameters of this model by maximizing the data log-
likelihood [13]. The M-step is described by

aj =

L∑

l=1

P (wl = j|Y) +

N∑
i=1

P (vi = 0, zi = j|Y),(2.2)

α̂j =
aj∑K

j′=1 aj′
,(2.3)

µ̂j =

∑N
i=1 P (zi = j|Y)yi∑N

i=1 P (zi = j|Y)
,(2.4)

Ĉj =

∑N
i=1 P (zi = j|{yi})(yi − µ̂j)(yi − µ̂j)

T

∑N
i=1 P (zi = j|Y)

.(2.5)

Here, the j-th component is assumed to be a Gaussian
with mean µj and covariance Cj , θj = (µj ,Cj). The
E-step consists of computing the probabilities P (wl =
j|Y), P (zi = j|Y) and P (vi =0, zi = j|Y), which can be
done by standard Bayesian network inference algorithms
like belief propagation or junction tree [10]. Because of
the simplicity of the structure of the graphical model,
inference can be carried out efficiently. In particular,
the complexity is virtually the same as the standard
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Figure 2: An example of the graphical model with constraint uncertainties for 9 points in 3 groups. Note that
each connected component in the graph is a polytree and hence the belief propagation algorithm can be used to
calculate the probabilities exactly.

EM algorithm when there are only positive constraints
that tie each of the zi to one group label.

2.1 Modification of the Objective Function The
proposed graphical model can handle the uncertainties
of constraints elegantly. However, the tradeoff between
the constraint information and the data information
cannot be controlled explicitly. To cope with this, an
additional term that represents the a posteriori enforce-
ment of constraints is included in the objective func-
tion. This is a distinct characteristic of the proposed
model: since each constraint is represented as a random
variable, we can consider its posterior probability. The
posterior probability that a constraint is “on” reflects
how strongly a constraint is enforced by the current pa-
rameter estimate. Instead of the binary statement that
a constraint is satisfied or violated, we can now con-
sider the partial degree of satisfaction of a constraint.
This way, the violation of constraints is measured more
accurately. Formally, the new objective function is

(2.6) E = log P (Y|Θ) +
∑

i,l

βil log P (vi = l|,Y, Θ),

with the convention that βil is zero when P (vi = l) = 0.
The posterior enforcement of the constraint on yi is
represented by log P (vi = l|,Y,Θ), because the event
vi = l corresponds to the constraint that zi is tied to
wl. The strengths of the constraints are represented
by βil, which are the user-specified tradeoff parameters
between the influence of the posterior probability and
the data log-likelihood. In this paper, we set βil = ατil,
where α is a global constraint strength parameter and
τil represents the goodness of the constraint tying yi to
the l-th group. If τil is unknown, we can assume that
all constraints are equally important and set τil to one.
The only parameter that needs to be specified is α.

Direct optimization of E is difficult and we resort
to variational method. Due to limitation of space, we
defer the derivation and the update formulae in the
long version of the paper [14]. In brief, there is no
change in the E-step, whereas the M-step (Equations

(2.3) to (2.5)) is modified by replacing the cluster
label probabilities with a weighted sum of constraint
satisfaction and cluster label probabilities.

3 Experiments

3.1 Synthetic Data Set Four 2D Gaussian distri-
butions with mean vectors [ 1.5

6 ],
[−1.5

6

]
,
[−1.5
−6

]
,
[

1.5
−6

]
,

and identity covariance matrix are considered. 150 data
points are generated from each of the four Gaussians.
The number of target clusters (K) is two. In the absence
of any constraints, two horizontal clusters are success-
fully discovered by the EM algorithm (Figure 4(d)). Ten
multiple random restarts were used to avoid poor local
minima. Now suppose that prior information favors two
vertical clusters instead of the more natural horizontal
clusters. This prior information can be incorporated by
constraining a data point in the leftmost (rightmost) top
cluster to belong to the same cluster as a data point in
the leftmost (rightmost) bottom cluster. To determine
the strength of a constraint, τil is randomly drawn from
the interval [0.6,1], and we set βil = ατil, where α is
the global constraint strength specified by the user. To
demonstrate the importance of constraint uncertainty,
the constraints are corrupted with noise: a data point is
connected to a randomly chosen point with probability
1− τil. An example set of constraints with 15% of data
points involved in the constraints is shown in Figure
4(a). Different portions of points participating in con-
straints are studied in the experiment. In all cases, the
proposed algorithm can recover the desired two “ver-
tical” clusters, whereas other algorithms (such as [17])
fail. It is worthy of note that our algorithm can recover
the target structure with as few as 2.5% of the data
points participating in constraints. If a clustering with
constraint algorithm that deduces cluster labels directly
is used, the anomaly illustrated in Figure 1 can happen,
because of the small number of constraints.

3.2 Real World Data Sets Experiments are also
performed on three data sets in the UCI machine learn-
ing repository (Table 1). For each data set, K is set
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(a) The constraints
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(c) α=20, 5% of data in constraints
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(d) Result without constraints
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(f) α=40, 2.5% of data in constraints

Figure 4: Results of the proposed algorithm when different number of data points participate in constraints.

Full name N D K d m

wdbc Wisconsin breast cancer 569 30 2 10 6

derm Dermatology 366 33 6 5 12

image Image Segmentation 2410 18 7 10 14

Table 1: Data sets used in the experiments. N : size of
data. D: no. of features. K: no. of classes. d: PCA
dimension. m: no. of points labelled by a teacher.

to the true number of classes. The distributed learn-
ing scenario described in [17], where different teachers
label a small subset of the data, is used to generate
the constraints. Each teacher labels 2K or 3K data
points, depending on the size of the data. The labels
assigned by the teachers are corrupted with noise with
probability based on the confidence of those labels. The
confidence is used as constraint strengths as in the case
for synthetic data. The number of teachers is deter-
mined by the percentage of points in constraints. PCA
is used to reduce the dimensionality of the data sets to
d to ensure there are a sufficient number of data points
to estimate the covariance matrix, with d determined
by the size of the data. For each data set, half of the
data is used for clustering, while the other half is used
to evaluate the clusters based on the ground truth la-
bels. We compare the performance of soft constraints
[13], hard constraints (equivalent to [17]) and the pro-
posed method in Table 2. The proposed algorithm leads
to superior clusters when compared with the results of

hard and soft constraints. The improvement due to con-
straints is not very significant for the Dermatology data
set, because the standard EM algorithm is able to find
a good quadratic cluster boundary. The degradation of
performance in image for hard constraints is due to the
existence of erroneous constraints.

4 Discussion

The proposed algorithm can be viewed from alternative
perspectives. It can be regarded as training a mixture
of Gaussians in a discriminative manner [9], with the
constraints serving as relaxed label information. If
different Gaussians share the same covariance matrix,
EM algorithm is related to performing discriminant
analysis with posterior probabilities as weights [7]. This
provides an alternative justification of our approach
even when the Gaussian assumption is not satisfied,
because the EM algorithm finds the clusters that are
best separated.

The global constraint strength α is the only param-
eter that requires tuning. In practice, α is chosen au-
tomatically by setting apart a set of “validation con-
straints” or “validation teachers”, which are not used
to estimate the clusters. The smallest value of α that
leads to clusters that violate the validation information
the least is chosen. Note that we do not observe signifi-
cant overfitting in our experiments. So, one may as well
use the value of α that leads to the smallest violation of
the training constraints.



20% of data in constraints 10% of data in constraints 5% of data in constraints

H S P P≥H P≥S H S P P≥H P≥S H S P P≥H P≥S

wdbc 6.5 1.9 16.7 9 10 2.8 1.5 13.3 9 9 3.4 -1.1 9.4 9 10

derm 0.5 1.0 3.5 5 6 2.9 2.5 5.2 5 6 1.4 2.3 4.5 6 9

image -2.6 2.6 6.1 8 10 -3.1 0.5 9.0 9 8 -5.8 2.2 5.0 9 6

Table 2: Results on real world data sets. Average improvements in accuracy (in %) with respect to no constraints
for soft constraints (S), hard constraints (H), posterior constraints, i.e., the proposed algorithm, (P ), are shown.
The number of times that the proposed algorithm outperforms the other two constraint algorithms in 10 runs is
also shown.

5 Conclusion

We have proposed a graphical model with the con-
straints as random variables. This principled approach
enables us to state the prior certainty and posterior en-
forcement of a constraint. The model is more robust
towards noisy constraints, and it provides a more gen-
eral approach to estimate constraint violation. Metric
learning is automatic because covariance matrices are
estimated. The use of variational method provides an ef-
ficient approach for parameter estimation. Experimen-
tal results show the utility of the proposed method. For
future work, we plan to estimate the number of clusters
automatically. Can traditional criteria like AIC, BIC or
MDL be modified to work in the presence of constraints?
A kernel version of this algorithm can be developed for
clusters with general shapes.
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