
Nonlinear Manifold Learning For Data Stream

Martin H. C. Law∗ Nan Zhang∗ Anil K. Jain∗

Abstract

There has been a renewed interest in understanding the
structure of high dimensional data set based on manifold
learning. Examples include ISOMAP [25], LLE [20]
and Laplacian Eigenmap [2] algorithms. Most of these
algorithms operate in a “batch” mode and cannot be
applied efficiently for a data stream. We propose an
incremental version of ISOMAP. Our experiments not
only demonstrate the accuracy and efficiency of the
proposed algorithm, but also reveal interesting behavior
of the ISOMAP as the size of available data increases.

1 Introduction

Data mining usually involves understanding the struc-
ture of large high dimensional data sets. Typically, the
underlying structure of the data is assumed to be on
a hyperplane. This assumption can be too restrictive
when the data points actualy lie on a nonlinear mani-
fold. A knowledge of the manifold can help us to trans-
form the data to a low-dimensional space with little loss
of information, enabling us to visualize data, as well as
performing classification and clustering more efficiently.
A separate issue in data mining is that sometimes infor-
mation is collected sequentially through a data stream.
In such situations, it would be very helpful if we can up-
date our analysis using the additional data points that
become available. Thus, the goal of this paper is to in-
vestigate how we can recover a nonlinear manifold given
a data stream.

One of the earliest nonlinear dimensionality reduc-
tion techniques is the Sammon’s mapping [22]. Over
time, other nonlinear methods have been proposed, such
as self organizing maps (SOM) [16], principal curve and
its extensions [13, 26], auto-encoder neural networks
[1, 10], generative topographic maps (GTM) [4] and
kernel principal component analysis (KPCA) [23]. A
comparison of some of these methods can be found in
[17]. Many of these algorithms learn a mapping from
the high dimensional space to a low dimensional space
explicitly. An alternative approach is based on the no-
tion of manifold that has received considerable attention
recently. Representative techniques of this approach in-

∗Dept. of Comp. Sci. and Eng., Michigan State University,
East Lansing, MI 48823, USA

clude isometric feature mapping (ISOMAP) [25], which
estimates the geodesic distances on the manifold and
uses them for projection, local linear embedding (LLE)
[20], which projects points to a low dimensional space
that preserves local geometric properties, and Lapla-
cian Eigenmap [2], which can be viewed as finding the
coefficients of a set of smooth basis functions on the
manifold. One can also model a manifold by a mix-
ture of Gaussians and recover the global co-ordinates
by combining the co-ordinates from different Gaussian
components [5, 21, 24, 27], or by other methods [28].
A related problem in manifold learning is to estimate
the intrinsic dimensionality of the manifold. Different
algorithms have been considered [19, 14].

Most of these algorithms operate in a batch mode1,
meaning that all data points need to be available during
training. When data points arrive sequentially, batch
methods are computationally demanding: repeatedly
running the “batch” version whenever new data points
are obtained takes a long time. Data accumulation is
particularly beneficial to manifold learning algorithms,
because many of them require a large amount of data
in order to satisfactorily learn the manifold. Another
desirable feature of incremental methods is that we can
visualize the evolution of the data manifold. As more
and more data points are obtained, visualization of the
change in the manifold may reveal some interesting
properties of the data stream. In our experiments,
we have composed a AVI video clip2 to show how the
manifold changes as we transit from a small to a large
data set.

Adaptiveness is also an advantage of incremental
manifold learning – the algorithm can adjust the man-
ifold in the presence of gradual changes. For example,
suppose we learn the manifold of the face images of N
individuals in order to improve the performance of face
recognition system. Over time, faces of different people
change gradually. This is referred as the aging effect,
one of the most challenging issues in face recognition.
The system performance can be improved if the mani-
fold of face images can be adjusted according to these

1Note that Sammon’s mapping can be implemented by a feed-
forward neural network [17] and hence can be made online if we
use an online training rule.

2http://www.cse.msu.edu/~lawhiu/iisomap.html

facial changes.
In this paper, we have modified the ISOMAP

algorithm to use data stream as the input. We have
decided to focus on the ISOMAP algorithm because it
is intuitive, well understood and produces reasonable
mapping results [15, 31]. Also, there are theoretical
studies supporting the use of ISOMAP, such as its
convergence proof [3] and when it can recover the co-
ordinates [11]. There is also a continuum extension of
ISOMAP [32].

The main contributions of this study are:

1. An incremental geodesic distance updating rule.
The geodesic distance is used in ISOMAP.

2. Methods to incrementally update the topological
co-ordinates. The proposed methods are indepen-
dent of the definition of the geodesic structure, so
they could also be used in other incremental non-
linear dimension reduction methods.

3. A method to visualize the data manifold to inter-
pret changes in the data stream.

The rest of this paper is organized as follows. After
a recap of ISOMAP in section 2, the proposed incremen-
tal methods are described in section 3. Experimental
results are presented in section 4, followed by discus-
sion in section 5. Finally, in section 6 we conclude and
describe some topics for future work.

2 ISOMAP

Given a set of data points y1, . . . ,yn in a high dimen-
sional space, ISOMAP assumes that the data lie on a
manifold of dimension d and tries to find the global co-
ordinates of those points on the manifold. Let xi ∈ Rd

be the co-ordinates corresponding to yi.3 ISOMAP at-
tempts to recover an isometric mapping from the co-
ordinate space to the manifold. One may view xi as
the (nonlinearly) reduced dimension representation of
yi. Define X = (x1, . . . ,xn). Let ∆ij be the dis-
tance between yi and yj . ISOMAP also requires the
user to specify the neighborhood. It can either be ε-
neighborhood, where yi and yj are neighbors if ∆ij is
less than a parameter ε, or knn-neighborhood, where yi

and yj are neighbors if yi (yj) is one of the k nearest
neighbors (knn) of yj (yi). The value of k is specified
by the user.

The ISOMAP algorithm first constructs a weighted
undirected neighborhood graph G = (V, E) with the

3In the original ISOMAP paper [25], the i-th data point is
simply denoted by i, and yi is used to denote the embedded co-
ordinate of i. In this paper, we instead adopt the notation used
in [8].

vertex vi ∈ V corresponding to yi. An edge between
vi and vj , e(i, j), exists iff yi is a neighbor of yj . The
weight of e(i, j), wij , is simply ∆ij . Let gij denote the
length of the shortest path sp(i, j) between vi and vj .
The shortest paths can be found by the Floyd-Warshall
algorithm or the Dijkstra’s algorithm with different
source vertices [7], and the shortest paths can be stored
efficiently by the predecessor matrix πij , where πij = k
if vk is immediately before vj in sp(i, j). Since gij can be
regarded as the approximate geodesic distance between
yi and yj , we shall call gij “geodesic distance”. Note
that G = {gij} is a symmetric matrix. By assuming∑

i xi = 0, the target inner product matrix B can be
found by B = HGH, where H = {hij}, hij = δij − 1/n
and δij is the delta function, i.e., δij = 1 if i = j and 0
otherwise. We seek XT X to be as close to B as possible
by setting X = (

√
λ1v1 . . .

√
λdvd)T , where λ1, . . . , λd

are the d largest eigenvalues of B, with corresponding
eigenvectors v1, . . . ,vd. Note that computing HGH is
effectively a centering operation on G, and this can be
computed in O(n2) time.

3 Incremental Version of ISOMAP

Suppose we have the co-ordinates xi of yi for 1 ≤
i ≤ n. The new sample yn+1 arrives and the goal of
incremental ISOMAP is to update the co-ordinates xi

so as to best preserve the updated geodesic distances.
This is done in three stages. We first update gij for
the original n vertices. The points x1, . . . ,xn are then
updated because of the changes in gij . Finally, xn+1,
the co-ordinate of the new sample, is found. Proofs and
details of the algorithms are described in the Appendix.

3.1 Updating the Geodesic Distances The point
yn+1 introduces a new vertex vn+1 in the graph G. At
first sight, it seems straightforward to incorporate the
influence of vn+1 on the geodesic distances, but the new
vertex can change the neighborhood structure and break
an edge in an existing shortest path, as well as creating
an improved shortest path.

Appendices A and C describe our algorithm in
details for updating the geodesic distances. The basic
idea is that we first find the set of edges that need to
be removed or added because of vn+1. For each edge
e(a, b) that needs to be removed, we “propagate” from
va and vb to find all (i, j) pairs such that the shortest
path from vi to vj uses e(a, b). The geodesic distances
of these vertex pairs need to be re-computed, and this is
done by a modified version of Dijkstra’s algorithm. The
added edges, which are incident on vn+1, may create a
better shortest path. We check the neighbors of vn+1 to
see if this happens or not. If yes, the effect of the better
shortest path is also propagated to other vertices.

While the proposed algorithm is applicable for both
knn and ε neighborhoods, we shall focus on the knn
neighborhood as it is more suitable for incremental
learning. During the incremental learning, the graph
can be temporarily disconnected. A simple solution is to
embed the largest graph component first, and then add
back the excluded vertices when they become connected
again as more data points become available.

3.2 Updating the Co-ordinates We need to up-
date the co-ordinates based on the modified geodesic
distance matrix Gnew. One may view this as an incre-
mental eigenvalue problem, as the co-ordinates xi can
be obtained by eigen-decomposition. However, since the
size of the geodesic distance matrix is increasing, tradi-
tional methods (such as those described in [30] or [6])
cannot be applied directly. We propose to use two com-
mon iterative updating schemes.

Let Gnew denote the matrix of updated geodesic
distances. Given B = HGH and X such that B ≈
XT X, our goal is to find the new Xnew such that
XT

newXnew ≈ Bnew, where Bnew = HGnewH. Our
first approach is based on gradient descent. The eigen
decomposition in batch ISOMAP is equivalent to finding
X that minimizes

(3.1) J(B,X) = tr
(
(B−XT X)(B−XT X)T

)
/n2,

which is the average of the square of the entries in
B−XXT . Its gradient is

(3.2) ∇XJ(B,X) = (−4XB + 4XXT X)/n2,

and we update the co-ordinates4 by Xnew = X −
α∇XJ(X,Bnew). While there exist many schemes to
select the step size α, we empirically set its value to
α = 0.003. This approach is fast (we descent only once)
and X is changed smoothly, thereby leading to a good
visualization.

Another approach to update X is to find the eigen-
values and eigenvectors of Bnew by an iterative ap-
proach. We first recover (approximately) the eigenvec-
tors of B from X by normalizing the i-th column of
XT to norm one to obtain the i-th eigenvector vi and
form V= (v1, . . . ,vd) as a reasonable initial guess of
the eigenvectors of Bnew. Subspace iteration together
with Rayleigh-Ritz acceleration [12] is used to refine V
as eigenvectors of Bnew:

1. Compute Z = BnewV and perform QR decomposi-
tion on Z, i.e., we write Z = QR and let V = Q.

4Although J(B,X) can have many saddle points with X
consisting of eigenvectors of B, this does not seem to affect the
gradient descent algorithm in practice.

2. Form Z = VT BnewV and perform eigen-
decomposition of the d by d matrix Z. Let λi and ui

be the i-th eigenvalue and the corresponding eigen-
vector.

3. Vnew = V[u1 . . .ud] is the improved set of eigen-
vectors of Bnew.

Since d is small (typically 2 or 3 for visualization
purposes), the time for eigen-decomposition of Z is
negligible. We do not use any variant of inverse iteration
because Bnew is not sparse and its inversion takes O(n3)
time.

3.2.1 Finding the Co-ordinates of the New
Sample xn+1 is found by matching its inner product
with xi to be as close to the target value as possible.
Let γi = ||xi−xn+1||2. Since

∑n
i=1 xi = 0, it is easy to

show that

||xn+1||2 =
1

n

(n∑
i=1

γi −
n∑

i=1

||xi||2
)

and xT
n+1xi = −1

2

(
γi − ||xn+1||2 − ||xi||2

) ∀i
(3.3)

By replacing γi with the actual geodesic distance gi,n+1,
we obtain our target inner product between xn+1 and
xi, fi, in a manner similar to equation (3.3). xn+1 can
be found by solving (in least-square sense) the equation
XT xn+1 = f , where f = (f1, . . . , fn)T . Alternatively,
we can initialize xn+1 randomly and then apply an
iterative method to refine its value. However, this is not
a good idea, since the co-ordinate of the newly arrived
data can be obtained in a straightforward manner as
above, and the user is usually interested in a good
estimate of the co-ordinate of the new data point.

After obtaining the new xn+1, we normalize them
so that the center of all the xi is at the origin.

3.3 Complexity In appendix E, we show that the
overall complexity of the geodesic distance update can
be written as O(q(|F |+ |H|)), where F and H contain
vertex pairs whose geodesic distances are lengthened
and shortened because of vn+1, respectively. We also
want to point out that algorithm 3 in appendix C is
reasonably efficient; its complexity to solve the all-pair
shortest path by forcing all geodesic distances to be
updated is O(n2logn + n2q). This is the same as the
complexity of the best known algorithm for the all-
pair shortest path problem of a sparse graph, which
involves running Dijkstra’s algorithm multiple times
with different source vertices.

For the update of co-ordinates, both gradient de-
scent and subspace iteration for co-ordinate update take
O(n2) time because of the matrix multiplication. We

are exploring different methods that make use of the
sparseness of the change in the geodesic distance ma-
trix in order to reduce its complexity. Section 6 also
describes other alternatives to cope with this issue.

4 Experiments

Our first experiment is on the Swiss roll data set
(Fig. 1(a)), which is also used in the original ISOMAP
paper. We use the knn neighborhood with k = 5. We
first learn an initial manifold of 30 samples by the batch
ISOMAP. The data points are then added in a random
order using the proposed incremental ISOMAP until we
get a total of 1200 samples. Fig. 1(b) shows the result.
Circles and dots represent the sample co-ordinates in the
manifold computed by the batch ISOMAP and the in-
cremental ISOMAP, respectively. We can see that the

0

50−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(a) Swiss roll data set

−50 0 50

−40

−30

−20

−10

0

10

20

30

40

(b) Last snapshot with 1200 samples

Figure 1: Incremental ISOMAP on Swiss roll data set.
The original data points are shown in (a). In (b), the
circles (o) and the dots (.) correspond to the target and
estimated co-ordinates, respectively.

final result of the incremental ISOMAP is almost the
same as the batch version. The video clip at http://

www.cse.msu.edu/~lawhiu/manifold/iisomap.html shows
the results of the intermediate stages as the data points
arrive. At first, the co-ordinates computed by the in-
cremental ISOMAP are far away from the target values
because the shortest path distances do not estimate the
geodesic distances on the manifold accurately. As ad-
ditional data points arrive, the shortest path distances
become more reliable and the co-ordinates of the incre-
mental ISOMAP converge to those computed by batch
ISOMAP.

4.1 Global Rearrangement of Co-ordinates
During our experiments, we were surprised that the
co-ordinates sometimes can change dramatically after
adding just a single sample (Fig. 2). The addition of
a new sample can delete critical edges in the graph
and this can change the geodesic distances dramatically.
Fig. 2(c) explains why: when the “short-circuit” edge e
is deleted, the shortest path from any vertex in A to
any vertex in B becomes much longer. This leads to a
substantial change of the geodesic distances and hence
the co-ordinates.

4.2 Approximation Error and Computation
Time Because the geodesic distances are exactly up-
dated, the only approximation error in the incremental
ISOMAP arises from the co-ordinate update. The error
can be estimated by comparing the co-ordinates from
our updating schemes with the co-ordinates from the ex-
act eigen-solver (Fig. 3). When there is a major change
in geodesic distances, the error increases sharply. It
then dies down quickly when more samples come. Both
methods converge to the target co-ordinates, with sub-
space iteration showing higher accuracy.

Regarding computation time, we note that most
of the computation involves updating the geodesic
distances based on the set of removed and inserted
edges, and updating the co-ordinates based on the new
geodesic distance matrix. We measure the running time
of our algorithm on a Pentium IV 1.8 GHz PC with
512MB memory. We have implemented our algorithm
mostly in Matlab, though the graph algorithms are writ-
ten in C. The times for gradient descent, subspace it-
eration and the exact eigen-solver are 14.9s, 48.6s and
625.5s, respectively5. Both gradient descent and sub-
space iteration are more efficient than the exact solver.
The gradient descent method is faster because it in-
volves only one matrix multiplication. For the update of
geodesic distances, our algorithm takes 82s altogether.
If we run the C implementation of Dijkstra’s algorithm

5Note that all these operations are performed in Matlab and
hence their comparison is fair.

−60 −40 −20 0 20 40

−40

−20

0

20

40

x y

(a) 903 samples

−60 −40 −20 0 20 40

−40

−30

−20

−10

0

10

20

30

40

(b) 904 samples

 e

 A B
(c)

Figure 2: A single sample can change the co-ordinates
dramatically. The addition of the 904-th sample breaks
an edge connecting x and y in (a), leading to a “flatten-
ing” of the co-ordinates as shown in (b). (c) explains
why the geodesic distances can change dramatically.

200 400 600 800 1000 1200
0

5

10

15

20

25

30

A
ve

ra
ge

 e
rr

or

Number of samples

(a) Gradient descent

200 400 600 800 1000 1200
0

1

2

3

4

5

A
ve

ra
ge

 e
rr

or

Number of samples

(b) Subspace iteration

Figure 3: L1 distance between the co-ordinates obtained
from the proposed updating methods and the exact
eigen-solver. Typical values of the co-ordinates can be
seen in figure 2. The co-ordinates are first aligned to
have diagonal covariance matrices and the same order
of variances before the error is computed.

in [25] repeatedly, it takes 1457s. This shows that our
algorithm is indeed more efficient for updating both the
geodesic distances and the co-ordinates.

4.3 The Face Image Data Set We also tested our
incremental ISOMAP on the face image data available
at the ISOMAP website http://isomap.stanford.edu.
This data set consists of 698 synthesized face images (64
by 64 pixels) in different poses and lighting conditions.
The intrinsic dimensionality of the manifold is 3. The
average error and the final snapshot are shown in Fig. 4.
We can see that our algorithm, once again, estimates the
co-ordinates accurately.

100 200 300 400 500 600
0

1

2

3

4

5

Number of samples

A
ve

ra
ge

 e
rr

or

(a) Approximation error

−50

0

50

−40
−20

0
20

−20

0

20

40

(b) Last snapshot (698 data points)

Figure 4: Results of incremental ISOMAP on the face
data set. Circles and dots correspond to the target and
estimated co-ordinates, respectively.

5 Discussion

Our algorithm is reasonably general and can be applied
in other common online learning settings. For example,
if we want to extend our algorithm to delete samples
collected in distant past, we simply need to change
the set D in Appendix B to be the set of edges
incident on the samples to be deleted, and then execute
the algorithm. Another scenario is that some of the
existing yi are altered, possibly due to the change of
the environment. In this case, we first calculate the
new weights of the edges in a straightforward manner.
If the weight of an edge increases, we modify the
algorithm in Appendix B in order to update the geodesic
distances, as edge deletion is just a special case of
weight increase. On the other hand, if the edge weight
decreases, algorithm 5 can be used. We then update the
co-ordinates based on the change in geodesic distance as
described in section 3.2.

As far as convergence is concerned, the output of
the incremental ISOMAP can be made identical to that
of the batch ISOMAP if the gradient descent or the sub-
space iteration is run repeatedly for each new sample.
Obviously, this is computationally unattractive. The
fact that we execute gradient descent or subspace iter-
ation only once can be regarded as a tradeoff between
theoretical convergence and practical efficiency, though
the convergence is excellent in practice. The dimension,
d, of xi, can be estimated from the data by examining
the residue of B−XT X in a manner similar to [25].

6 Conclusions and Future Work

We have presented an incremental version of the
ISOMAP algorithm. We have solved the graph the-
ory problem of updating the geodesic distances and the
numerical problem of updating the co-ordinates. Our
experiments demonstrate the efficiency and accuracy of
the proposed method.

There are several directions for future work. The
current algorithm is not fully online, because ISOMAP
is a global algorithm: for any sample, we need to
consider how it interacts with the other samples before
we can find its co-ordinate. There are several possible
ways to tackle this. The simplest approach is to discard
the oldest sample when we have accumulated a sufficient
number of samples. This also has the additional benefit
of making the algorithm adaptive. Alternatively, we can
maintain a set of “landmark points” [9] of constant size
and consider the relationship of the new sample with
only the landmark points. Finally, we can compress the
data by, say, Gaussians that lie along the manifold [29].

We can improve the efficiency of co-ordinate up-
date by making use of the sparseness of the change in
geodesic distances. Non-exact but possibly more effi-

cient algorithms for updating the geodesic distances can
be considered. Ideas similar to the distance vector or
link state in network routing are worthy of investiga-
tion. We can also consider the online version of other
manifold learning algorithms, using the tools proposed
as building blocks.

Acknowledgement

This research was supported by ONR contract #
N00014-01-1-0266.

References

[1] P. Baldi and K. Hornik. Neural networks and principal
component analysis: learning from examples without
local minima. Neural Networks, 2:53–58, 1989.

[2] M. Belkin and P. Niyogi. Laplacian eigenmaps and
spectral techniques for embedding and clustering. In
Advances in Neural Information Processing Systems
14, pages 585–591. MIT Press, 2002.

[3] M. Bernstein, V. de Silva, J. Langford, and J. Tenen-
baum. Graph approximations to geodesics on embed-
ded manifolds. Technical report, Department of Psy-
chology, Stanford University, 2000.

[4] C. M. Bishop, M. Svensen, and C. K. I. Williams.
GTM: the generative topographic mapping. Neural
Computation, 10:215–234, 1998.

[5] M. Brand. Charting a manifold. In Advances in
Neural Information Processing Systems 15, pages 961–
968. MIT Press, 2003.

[6] M. Brand. Fast online SVD revisions for lightweight
recommender systems. In Proc. SIAM International
Conference on Data Mining, 2003. http://www.siam.

org/meetings/sdm03/proceedings/sdm03_04.pdf.
[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.

Introduction to Algorithms. MIT Press, 1990.
[8] T. F. Cox and M. A. A. Cox. Multidimensional Scaling.

Chapman & Hall, 2001.
[9] V. de Silva and J. B. Tenenbaum. Global versus local

approaches to nonlinear dimensionality reduction. In
Advances in Neural Information Processing Systems
15, pages 705–712. MIT Press, 2003.

[10] D. DeMers and G. Cottrell. Non-linear dimensionality
reduction. In Advances in Neural Information Process-
ing Systems, volume 5, pages 580–587. Morgan Kauf-
mann, 1993.

[11] D. L. Donoho and C. Grimes. When does isomap re-
cover natural parameterization of families of articu-
lated images? Technical Report 2002-27, Department
of Statistics, Stanford University, August 2002.

[12] G. H. Golub and C. F. Van Loan. Matrix Computa-
tions. Johns Hopkins University Press, 1996.

[13] T. Hastie and W. Stuetzle. Principal curves. Journal
of the American Statistical Association, 84:502–516,
1989.

[14] D. R. Hundley and M. J. Kirby. Estimation of
topological dimension. In Proc. SIAM International
Conference on Data Mining, 2003. http://www.siam.

org/meetings/sdm03/proceedings/sdm03_18.pdf.
[15] O. C. Jenkins and M. J Mataric. Automated derivation

of behavior vocabularies for autonomous humanoid
motion. In Proc. of the Second Int’l Joint Conference
on Autonomous Agents and Multiagent Systems, Mel-
bourne, Austrailia, July 2003.

[16] T. Kohonen. Self-Organizing Maps. Springer-Verlag,
2001. 3rd edition.

[17] J. Mao and A. K. Jain. Artificial neural networks
for feature extraction and multivariate data projection.

IEEE Transactions of Neural Networks, 6(2):296–317,
March 1995.

[18] E. M. Palmer. Graph Evolution: An Introduction to
the Theory of Random Graphs. John Wiley & Sons,
1985.

[19] K. Pettis, T. Bailey, A. K. Jain, and R. Dubes. An
intrinsic dimensionality estimator from near-neighbor
information. IEEE Transactions of Pattern Analysis
and Machine Intelligence, 1(1):25–36, January 1979.

[20] S. T. Roweis and L. K. Saul. Nonlinear dimension-
ality reduction by locally linear embedding. Science,
290:2323–2326, 2000.

[21] S. T. Roweis, L. K. Saul, and G. E. Hinton. Global
coordination of local linear models. In Advances in
Neural Information Processing Systems 14, pages 889–
896. MIT Press, 2002.

[22] J. W. Sammon. A non-linear mapping for data struc-
ture analysis. IEEE Transactions on Computers, C-
18(5):401–409, May 1969.

[23] B. Schölkopf, A.J. Smola, and K.-R. Müller. Nonlinear
component analysis as a kernel eigenvalue problem.
Neural Computation, 10:1299–1319, 1998.

[24] Y. W. Teh and S. T. Roweis. Automatic alignment of
local representations. In Advances in Neural Informa-
tion Processing Systems 15, pages 841–848. MIT Press,
2003.

[25] J.B. Tenenbaum, V. de Silva, and J.C. Langford. A
global geometric framework for nonlinear dimensional-
ity reduction. Science, 290:2319–2323, 2000.

[26] R. Tibshirani. Principal curves revisited. Statistics
and Computing, 2:183–190, 1992.

[27] J.J. Verbeek, N. Vlassis, and B. Krose. Coordinating
principal component analyzers. In Proceedings of In-
ternational Conference on Artificial Neural Networks,
pages 914–919, Madrid, Spain, 2002.

[28] J.J. Verbeek, N. Vlassis, and B. Krose. Fast nonlinear
dimensionality reduction with topology preserving net-
works. In Proc. 10th European Symposium on Artificial
Neural Networks, pages 193–198, 2002.

[29] P. Vincent and Y. Bengio. Manifold parzen windows.
In Advances in Neural Information Processing Systems
15, pages 825–832. MIT Press, 2003.

[30] J. Weng, Y. Zhang, and W.S. Hwang. Candid
covariance-free incremental principal component anal-
ysis. IEEE Trans. Pattern Analysis and Machine In-
telligence, 25(8):1034–1040, 2003.

[31] M.-H. Yang. Face recognition using extended isomap.
In International Conference on Image Processing,
pages II: 117–120, 2002.

[32] H. Zha and Z. Zhang. Isometric embedding and
continuum isomap. In International Conference on
Machine Learning, 2003. http://www.hpl.hp.com/

conferences/icml2003/papers/8.pdf.

Appendix A Update of Neighborhood Graph

The addition of vn+1 modifies the neighborhood graph.
Let A and D denote the set of edges that are added and
deleted from the graph, respectively.

For ε-neighborhood, there is an edge between vi and
vn+1 iff ∆i,n+1 ≤ ε. Also, ∆ij is not affected by vn+1

for 1 ≤ i ≤ n and 1 ≤ j ≤ n. So no edge is deleted.
Therefore,

A = {e(i, n + 1) : i ∈ 1, . . . , n and ∆i,n+1 ≤ ε}
D = ∅.(A.1)

The case for knn-neighborhood is more complicated.
e(i, n + 1) is added if vi is one of the knn of vn+1, or
vn+1 is one of the knn of vi. Let τi be the index of
the k-th nearest neighbor of vi before vn+1 is added.
vn+1 will become one of the knn of vi if ∆i,τi > ∆i,n+1.
When this happens, vτi

is no longer one of the knn of
vi, and e(i, τi) should be broken if vi is also not one
of the knn of vτi

. This can be detected by checking if
∆τi,i > ∆τi,ιi is true or not. Here, ιi denotes the k-th
nearest neighbor of vτi after inserting vn+1. We have

A = {e(i, n + 1) : i is one of the knn of vn+1

or ∆i,τi > ∆i,n+1}
D = {e(i, τi) : ∆i,τi > ∆i,n+1 and ∆τi,i > ∆τi,ιi}.

(A.2)

A.1 Complexity The construction of A and D takes
O(n) time by checking these conditions for all the ver-
tices. For knn-neighborhood, we need to find ιi for all i.
By examining all the neighbors of different vertices, we
can find ιi with time complexity O(

∑n
i=1 deg(vi)+ |A|),

which is just O(|E| + |A|). deg(vi) denotes the degree
of vi. The complexity of this step can be bounded by
O(nq), where q is the maximum degree of the vertices
in the graph after inserting vn+1. Note that ιi becomes
the new τi for the n + 1 vertices.

Appendix B Effect of Edge Deletion

Suppose we want to delete e(a, b) from the graph. The
lemma below is straightforward.

Lemma B.1. If πab 6= a, deletion of e(a, b) does not
affect any of the existing shortest paths and therefore
no geodesic distance gij needs to be updated.

For the remainder of this section we assume πab = a.
This implies πba = b. The next lemma is an easy
consequence of this assumption.

Lemma B.2. For any vertex vi, sp(i, b) passes through
va iff sp(i, b) contains e(a, b) iff πib = a.

Let Rab ≡ {i : πib = a}. Intuitively, Rab contains
vertices whose shortest paths to vb include e(a, b). We
shall first construct Rab, and then “propagate” from Rab

to get the geodesic distances that require update.

B.1 Construction Step Let Tsp(b) denote “the
shortest path tree” of vb, which is defined to consist
of edges in the shortest paths with vb as starting ver-
tex. For any vertex vt, sp(t, b) consists of edges in Tsp(b)
only. So the vertices in sp(t, b), except vt, are exactly
the ancestors of vt in the tree.

Lemma B.3. Rab is exactly the set of vertices in the
subtree of Tsp(b) rooted at va.

Proof.

vt is in the subtree of Tsp(b) rooted at va

⇔ va is an ancestor of vt in Tsp(b)
⇔ sp(t, b) passes through va

⇔ πtb = a (lemma B.2)
⇔ t ∈ Rab

If vt is a child of vu in Tsp(b), vu is the vertex in sp(b, t)
just before vt. Thus, we have the lemma below.

Lemma B.4. The set of children of vu in Tsp(b) =
{vt : vt is a neighbor of vu and πbt = u}.

Consequently, we can examine all neighbors of vu to
find its children in Tsp(b). This leads to algorithm 1
that performs a tree traversal to construct Rab.

B.1.1 Complexity At any time, the vertices in the
queue Q are the examined vertices in the subtree. The
while loop is executed |Rab| times. The inner for
loop is executed a total of

∑
deg(vt) times, where the

summation is over all vt ∈ Rab. The sum can be
bounded loosely by q|Rab|. Therefore, a loose bound
for algorithm 1 is O(q|Rab|).

Rab := ∅; Q.enqueue(a);
while Q.notEmpty do

t := Q.pop; Rab = Rab ∪ {t};
for all vu adjacent to vt in G do

if πub = t then
Q.enqueue(u);

end if
end for

end while
Algorithm 1: Constructing Rab by tree traversal.

B.2 Propagation Step We proceed to consider
F(a,b) ≡ {(i, j) : sp(i, j) contains e(a, b)}. Note that
(a, b) denotes an unordered pair, and F(a,b) is also a
set of unordered pairs. F(a,b) contains vertex pairs such
that the corresponding geodesic distances need to be re-
computed when e(a, b) is broken. F(a,b) is found by a
search starting from vb for each of the vertex in Rab.
Rab and F(a,b) are related by the following two lemmas.

Lemma B.5. If (i, j) ∈ F(a,b), either i or j is in Rab.

Proof. (i, j) ∈ F(a,b) means that sp(i, j) contains e(a, b).
We can write sp(i, j) = vi Ã va → vb Ã vj or
sp(i, j) = vi Ã vb → va Ã vj , where Ã denotes a
path between the two vertices. Because the subpath of
a shortest path is also a shortest path, either sp(i, b) or
sp(j, b) passes through va. By lemma B.2, either πib = a
or πjb = a. Hence either i or j is in Rab.

Lemma B.6. F(a,b) = ∪u∈Rab
{(u, t) : vt in the subtree

of Tsp(u) rooted at vb}.

Proof. By lemma B.5, (u, t) ∈ F(a,b) implies either u or
t is in Rab. Without loss of generality, suppose u ∈ Rab.
So, sp(u, t) can be written as vu Ã va → vb Ã vt. Thus
vt must be in the subtree of Tsp(u) rooted at vb. On the
other hand, for any vertex vt in the subtree of Tsp(u)
rooted at vb, sp(u, t) goes through vb. Since sp(u, b)
goes through va (because u ∈ Rab), sp(u, t) must also
go through va and hence use e(a, b).

The above lemma seems to suggest that we need to
construct different shortest path trees for different u in
Rab. This is not necessary because of the lemma below.

Lemma B.7. Consider u ∈ Rab. The subtree of Tsp(u)
rooted at vb is not empty, and let vt be any vertex in
this subtree. Let vs be a child of vt in the subtree, if
any. We have the following:

1. vt is in the subtree of Tsp(a) rooted at vb.

2. vs is a child of vt in the subtree of Tsp(a) rooted at
vb

3. πus = πas = t

Proof. The subtree of Tsp(u) rooted at vb is not empty
because vb is in this subtree. For any vt in this subtree,
sp(u, t) passes through vb. Hence sp(u, b) is a subpath
of sp(u, t). Because u ∈ Rab, sp(u, b) passes through va.
So, we can write sp(u, t) as vu Ã va → vb Ã vt. Thus
sp(a, t) contains vb, implying that vt is in the subtree of
Tsp(a) rooted at vb.

Now, if vs is a child of vt in the subtree of Tsp(u)
rooted at vb, sp(u, s) can be written as vu Ã va →

vb Ã vt → vs. So, πus = t. Because any subpath of a
shortest path is also a shortest path, sp(a, s) is simply
va → vb Ã vt → vs, which implies vs is also a child of
vt in Tsp(a) rooted at vb, and πas = t. Therefore, we
have πus = πas = t.

Let F be the set of unordered pair (i, j) such that a
new shortest path from vi to vj is needed when edges in
D are removed. It is obvious that F = ∪e(a,b)∈DF(a,b).
F is constructed by merging different F(a,b), and F(a,b)

can be obtained by algorithm 2. At each step, we
traverse the subtree of Tsp(a) rooted at vb, using the
condition πus = πas to check if vs is in Tsp(u) rooted at
vb or not. The subtree of Tsp(a) is expanded “on-the-
fly” by T ′.

F(a,b) := ∅;
Initialize T ′, the expanded part of the subtree of
Tsp(a) rooted at vb, to contain vb only.
for all u ∈ Rab do

Q.enqueue(b)
while Q.notEmpty do

t := Q.pop;
if πat = πut then

F(a,b) = F(a,b) ∪ {(u, t)};
if vt is a leaf node in T ′ then

for all vs adjacent to vt do
Insert vs as a child of vt in T ′ if πas = t

end for
end if
Insert all the children of vt in T ′ to the queue
Q;

end if
end while

end for
Algorithm 2: The algorithm to construct F(a,b).

B.2.1 Complexity If we ignore the time to con-
struct T ′, the complexity of this step is proportional
to the number of vertices examined. If the maximum
degree of T ′ is q′, this is bounded by O(q′|F |). Note
that q′ ≤ q. The time to expand T ′ is proportional
to the number of vertices actually expanded plus the
number of edges incident on those vertices. Thus, it is
bounded by q times the size of the tree, and the size of
the tree is at most of the same order as |F(a,b)|. Usu-
ally, the time is much less, because different u in Rab can
reuse the same T ′. The time complexity to construct
F(a,b) can be bounded by O(q|F(a,b)|) in the worst case.
The overall time complexity to construct F , which is
the union of F(a,b) for all (a, b) ∈ D, is O(q|F |), assum-
ing the number of duplicate pairs in F(a,b) for different

(a, b) is O(1). Empirically, there are at most several
such duplicate pairs, while most of the time there is no
duplicate pair at all.

Appendix C Updating the Geodesic Distances

Let G′ = (V,E/D), the graph after deleting the edges
in D. Let A be an undirected graph with the same
vertices as G but with edges in F , i.e., A = (V, F). In
other words, vi and vj are adjacent in A iff gij needs to
be updated. Define Cu ={i : e(i, u) is an edge in A}.
Our update strategy is to pick vu ∈ A and then find the
shortest paths from vu to all vertices represented in Cu.
This update effectively removes vu from A. We then
pick another vertex vu′ from A, find the new shortest
paths from vu′ , and so on, until there are no more edges
in A.

The new shortest paths are found by algorithm
3, which is based on the Dijkstra’s algorithm with
vu as the source vertex. Recall the basic idea of
Dijkstra’s algorithm is to add vertex one by one to
a “processed” set, in an ascending order of estimated
shortest path distances. In our case, any vertex that
is not in Cu is regarded as “processed”, because its
shortest path distance has already been computed and
no modification is needed. The first “for” loop in
algorithm 3 estimates the shortest path distances for
vertices in Cu if the shortest paths are just “one edge
away” from the “processed” vertices. In the while loop,
the vertex with the smallest estimated shortest path
distance is “processed”, and we relax the estimated
shortest path distances for the other “unprocessed”
vertices accordingly.

C.1 Complexity The “for” loop takes at most
O(q|Cu|) time. In the “while” loop, there are |Cu| Ex-
tractMin operations, and the number of DecreaseKey
operations depends on how many edges are there within
the vertices in Cu. A upper bound for this is q|Cu|.
By using Fibonacci’s heap, ExtractMin can be done in
O(log |Cu|) time while DecreaseKey can be done in O(1)
time, on average. Thus the complexity of algorithm 3 is
O(|Cu| log |Cu|+ q|Cu|). If binary heap is used instead,
the complexity is O(q|Cu| log |Cu|).

C.2 Order of Update We have not yet discussed
how to choose the vertex to be removed from A (in or-
der to update its geodesic distances). Obviously, we
should remove vertices in an order that minimizes the
complexity of all the updates. Let fi be the degree of
the i-th vertex removed in A. The overall time complex-
ity of running the modified Dijkstra’s algorithm for each
of the removed vertices is O(

∑n
i=1(fi log fi + qfi)). Be-

cause
∑n

i=1 fi is constant, we should delete the vertices

for all j ∈ C(u) do
H := the set of indices of vertices that are adjacent
to vj in G′ and not in C(u);
Insert δ(j) = mink∈H (guk + wkj) to a heap with
index j. If H = ∅, δ(j) = ∞.

end for
while Heap not empty do

k := the index of the entry by “Extract Min” on
the heap;
C(u) := C(u)/{k}; guk := δ(k); gku := δ(k);
for all vj that are adjacent to vk in G′ and j ∈ C(u)
do

dist := guk + wkj ;
if dist < δ(j) then

“Decrease Key” from δ(j) to dist for the entry
with index j in the heap;

end if
end for

end while
Algorithm 3: Modified Dijkstra’s algorithm for up-
dating the geodesic distances.

in A in an order that minimizes
∑

i fi log fi. However,
finding the order to delete the vertices that minimizes
the sum is hard. Since the sum is dominated by the
largest fi, we instead try to minimizes maxi fi. This
can be done by a greedy algorithm that removes the
vertex in A with the smallest degree. The correctness
of this greedy approach can be seen from the follow-
ing argument. Suppose the greedy algorithm is wrong.
Then at some point the algorithm makes a mistake, i.e.,
it removes vt instead of vu, and the removal of vt leads to
an increase of maxi fi from the smallest possible value.
This can only happen when deg(vt) > deg(vu). This is
a contradiction, since the algorithm always removes the
vertex with the smallest degree. Because the degree of
each vertex is an integer, we can use an array of linked
list to implement the greedy algorithm (algorithm 4).

C.2.1 Complexity The first “for” loop takes O(n)
time. In the second “for” loop, pos is incremented at
most 2n times, because it can at most move backwards
n steps. The inner “for” loop is executed altogether
O(|F |) time. Therefore, the overall time complexity
for algorithm 4 (excluding the time for executing the
modified Dijkstra’s algorithm) is O(|F |).

Appendix D Shortening of Geodesic Distances

Recall A is the set of edges to be added to the graph.
This is the same as the set of edges that are incident on
vn+1 in G′. The geodesic distances between vn+1 and
other vertices are first found in O(n|A|) time by the

Initialize an array of linked list l[i] such that l[i] is
empty for i = 1, . . . , n.
for all vu ∈ A do

f := degree of vu in A. Insert vu to l[f].
end for
pos := 1;
for i := 1 to n do

If l[pos] is empty, increment pos by one and until
l[pos] is not empty.
Remove vu, a vertex in the linked list stored in
l[pos], from the graph A.
Call the modified Dijkstra’s algorithm for vu and
its neighbor (as Cu).
for all vj that is a neighbor of vu do

Find where vj resides among the linked lists.
This can be done by an indexing array.
Move vj from l[f] to l[f − 1], or remove vj from
the linked lists if f = 1.
If f − 1 < pos, set pos := f − 1.

end for
end for

Algorithm 4: A greedy algorithm to determine a good
order to remove the vertices in A.

following equation:

(D.1) gn+1,i = gi,n+1 = min
j such that
e(n+1,j)∈A

(
gij + wj,n+1

) ∀i.

We proceed to consider how the addition of edges in
A can decrease the other geodesic distances. Let L =
{(i, j) : e(i, n + 1) and e(n + 1, j) form a shorter path
from vi to vj than sp(i, j)}. Intuitively, L is the set
of unordered pairs adjacent to vn+1 that new shortest
paths running through vn+1 form. L can be constructed
in O(|A|2) time.

We run algorithm 5 for different (a, b) ∈ L in order
to propagate the effect of the new shortest paths to other
vertices. Suppose a better shortest path between vi and
vj now emerges because the shortest path distance from
va to vb is reduced. We can find all such vi and vj in
a manner similar to the construction of F(a,b). Without
loss of generality, the new shortest path between vi and
vj can be written as vi Ãva→vn+1→ vb Ãvj . So, vi

is a vertex in the subtree of Tsp(n + 1) rooted at va,
and the first “while” loop in algorithm 5 locates all the
vertices in the subtree, which are candidates for vi. For
any vi, vj must be in the “revised” subtree of Tsp(i)
rooted at vb. Here, “revised” means that the shortest
path tree is the new tree that includes vn+1. If vj is
in the “revised” subtree, vj must be in the subtree of
Tsp(n + 1) rooted at vb. Furthermore, if vl is a child
of vj in the “revised” subtree, vl must also be a child

of vj in the subtree of Tsp(n + 1) rooted at vb, and the
condition (gi,n+1 + gn+1,l) < gil must be true. The
proof of these properties is similar to the proof for the
relationship between F(a,b) and Rab and hence is not
repeated. These properties also explain the correctness
of algorithm 5.

S := ∅; Q.enqueue(a);
while Q.notEmpty do

t := Q.pop; S := S ∪ {t};
for all vu that are children of vt in Tsp(n + 1) do

if gu,n+1 + wn+1,b < gu,b then
Q.enqueue(u);

end if
end for

end while
for all u ∈ S do

Q.enqueue(b);
while Q.notEmpty do

t := Q.pop; gut := gtu := gu,n+1 + gn+1,t;
for all vs that are children of vt in Tsp(n + 1)
do

if gs,n+1 + wn+1,a < gs,a then
Q.enqueue(s);

end if
end for

end while
end for

Algorithm 5: Construction of shortest paths that are
shortened because of vn+1.

D.1 Complexity Let H = {(i, j) : A better shortest
path appears between vi and vj because of vn+1 }. By
an argument similar to the complexity of constructing
F , we can see that the complexity of finding H and
then revising the corresponding geodesic distances in
algorithm 5 is O(q|H|+ |A|2). The O(|A|2) time is due
to the construction of L.

Appendix E Overall Complexity for Geodesic
Distance Update

The neighborhood graph update takes O(nq) time.
The construction of Rab takes O(q|Rab|) time, while
the construction of Fab takes O(q|Fab|) time. Since
|Fab| ≥ |Rab|, the last two steps take O(q|Fab|) time
together. As a result, the time to construct F based
on the removed and inserted edges is O(q|F |). The
time to run the Dijkstra’s algorithm is difficult to
estimate. Let µ be the number of vertices in A that
have edges incident on them, and let ν ≡ maxi fi

as defined in Appendix C. In the worst case, ν
can be as large as µ, though this is highly unlikely.

To get a glimpse of the typical values of ν, we can
utilize concepts from random graph theory. It is easy
to see that ν = maxl{A has a l-regular sub-graph}.
Unfortunately, we have not been able to locate any
result on the behavior of the largest l-regular sub-graph
in random graphs. On the other hand, the properties of
the largest l-complete sub-graph, i.e., a clique of size l,
have been well studied for random graphs. The clique
number (the size of the largest clique in a graph) of
almost every graph is “close” to O(log µ) [18]. We
conjecture that, on average, ν is also of the order
O(log µ). This is in agreement with what we have
observed empirically. Under this conjecture, the total
time to run the Dijkstra’s algorithm can be bounded by
O(µ log µ log log µ + q|F |). Finally, the time complexity
of algorithm 5 is O(q|H|+|A|2). So, the overall time can
be written as O(q|F | + q|H| + µ log µ log log µ + |A|2).
In practice, the first two terms dominate, and we can
write the complexity as O(q(|F |+ |H|)).

