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Abstract—Semi-supervised learning has attracted a significant of labeled data, combined with the large amount of unlabeled
amount of attention in pattern recognition and machine learning. data to build efficient classification systems.
Most previous studies have focused on designing special algo- Existing semi-supervised classification algorithms may be

rithms to effectively exploit the unlabeled data in conjunction o . . . .
with labeled data. Our goal is to improve the classification classified into two categories based on their underlying as-

accuracy ofany given supervised learning algorithm by using the Sumptions. An algorithm is said to satisfy timeanifold as-
available unlabeled examples. We call this as th8emi-supervised sumptionif it utilizes the fact that the data lie on a low-

improvementproblem, to distinguish the proposed approach dimensional manifold in the input space. Usually, the un-
from the existing approaches. We design a meta-semi-supervisedyearying geometry of the data is captured by representing
learning algorithm that wraps around the underlying supervised he d h with | h . d th
algorithm, and improves its performance using unlabeled data. t ef _ata a.s _a Qfap » with samples as the vertices, an. the
This problem is particularly important when we need to train a  Pairwise similarities between the samples as edge-weights
supervised learning algorithm with a limited number of labeled Several graph based algorithms such as Label propagafion [3
examples and a multitude of unlabeled examples. We present [4], Markov random walks [5], Graph cut algorithms [6],

a boosting framework for semi-supervised learning, termed as ;
SemiBoost. The key advantages of the proposed semi-supervisedS pectral dg_r aFt)E trlinsdtucer [7]’; nd I&OW ?ﬁpSlty sepatr_aﬂbn [
learning approach are: (a) performance improvement of any proposed In the literature are based on this assumption.

supervised learning algorithm with a multitude of unlabeled data, Several algorithms have been proposed for semi-supervised
(b) efficient computation by the iterative boosting algorithm, learning which are naturally inductive. Usually, they aeséd

and (c) exploiting both manifold and cluster assumption in on an assumption, called tlouster assumption[9]. It states
training classification models. An gmplrlcal study on 16 different that the data samples with high similarity between them,tmus
datasets, and on text categorization demonstrates that the pf . .
posed framework improves the performance of several commonly share th_e same label. Th|§ may be equivalently expressed as
used supervised learning algorithms, given a large number of @ condition that the decision boundary between the classes
unlabeled examples. We also show that the performance of the must pass through low density regions. This assumption al-
proposed algorithm, SemiBoost, is comparable to the state-of- ows the unlabeled data to regularize the decision boundary
the-art semi-supervised learning algorithms. which in turn influences the choice of classification models.

Index Terms—Machine learning, Semi-supervised learning, Many successful semi-supervised algorithms like TSVM [10]
Semi-supervised improvement, Manifold assumption, Cluster gng Semi-supervised SVM [11] follow this approach. These
assumption, Boosting algorithms assume a model for the decision boundary, iegult

in an inductive classifier.
|. INTRODUCTION Manifold regularization [12] is another inductive apprbac

Semi-supervised learning has received a significant ister¢éhat is built on the manifold assumption. It attempts to dbail
in pattern recognition and machine learning. While semimaximum-margin classifier on the data, while minimizing the
supervised classification is a relatively new field, the idéa corresponding inconsistency with the similarity matridhig
using unlabeled samples for prediction was conceived akves achieved by adding a graph-based regularization term to
decades ago. The initial work in semi-supervised learningan SVM based objective function. A related approach called
attributed to H. J. Scudders for his work on “self-learningLIAM [13] regularizes the SVM decision boundary using a
in 1965 [1]. An earlier work by Robbins and Monro [2] onpriori metric information encoded into the Graph Laplagian
sequential learning can also be viewed as related to selad has a fast optimization algorithm.
supervised learning. The key idea of semi-supervisedilegyn Most semi-supervised learning approaches design special-
specifically semi-supervised classification, is to explmth ized learning algorithms to effectively utilize both labél
labeled and unlabeled data to learn a classification modahd unlabeled data. However, it is often the case that a
Enormous amount of data is being generated everyday in theer already has a favorite (well-suited) supervised legrn
form of news articles, documents, images and email to namalgorithm for his application, and would like to improve its
few. Most of the generated data is uncategorized or unldbelperformance by utilizing the available unlabeled data.hiis t
thereby making it difficult to use supervised approaches light, a more practical approach is to design a technique to
automate applications like personal news filtering, enzaing utilize the unlabeled samples, regardless of the undeylyin
filtering, and document and image classification. Typigallyearning algorithm. Such an approach would accommodate for
there is only a small amount of labeled data available, ftie task-based selection of a classifier, while providingitih
example, based on which articles a user marks interestmg,am ability to utilize unlabeled data effectively. We refer t
which email he marks as spam, but there is a huge amotinis problem of improving the performance afiy supervised
of data that has not been marked. As a result, there is laarning algorithm using unlabeled data &smi-supervised
immense need for algorithms that can utilize the small armoumprovementto distinguish our work from the standard semi-
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Fig. 1. Block diagram of the proposed algorithm, SemiBoose Tiputs to SemiBoost are: labeled data, unlabeled data @nsirtiilarity matrix.

supervised learning problems. unlabeled examples at each iteration, as well as for asgjgni
To address the semi-supervised improvement, we proposelass labels to them. For each unlabeled examyplewe
boosting framework, termeflemiBoostfor improving a given compute the confidence of assigning the exampleo the
supervised learning algorithm with unlabeled data. Simil@ositive class as well as the confidence of assigning it to the
to most boosting algorithms [14], SemiBoost improves theegative class. These two confidences are computed based on
classification accuracy iteratively. At each iteration,usmiver the prediction made by the boosted classifier and the sitgilar
of unlabeled examples will be selected and used to train a nemong different examples. We then select the examples with
classification model using the given supervised learnigg-al the highest classification confidence together with theléabe
rithm. The trained classification models from each iteraticexamples to train a new classification model at each iteratio
are combined linearly to form a final classification model. Aithe new classification model will be combined linearly with
overview of the SemiBoost is presented in Figure 1. The kélye existing classification models to make improved predic-
difficulties in designing SemiBoost are: (1) how to sample thtions. Note that the proposed approach is closely related to
unlabeled examples for training a new classification motel graph-based semi-supervised learning approaches thimitexp
each iteration, and (2) what class labels should be assignikd manifold assumption. The following section discusbées t
to the selected unlabeled examples. It is important to nadgisting semi-supervised learning methods, and theitioela
that unlike supervised boosting algorithms where we selesttip with SemiBoost.
labeled examples that are difficult to classify, SemiBoestds
to select unlabeled examples, at each iteration. I
One way to address the above questions is to exploit both the
clustering assumption and the large margin criterion. Care ¢ Table | presents a brief summary of the existing semi-
improve the classification margin by selecting the unlatelgupervised learning methods and the underlying assungption
examples with the highest classification confidence, andrassThe first column shows the assumptions on the data used
them the class labels that are predicted by the currentifitmss in the algorithm. The second column gives the name of the
The assigned labels are hereafter referred to agppsieaido- approach with its reference, followed by a brief descripiid
labels The labeled data, along with the selected pseudidie method in column 3. Column 4 specifies if the algorithm
labeled data are utilized in the next iteration for trainiag is naturally inductive (I) or transductive (T). An induativ
second classifier. This is broadly the strategy adopted by @bgorithm can be used to predict the labels of samples that
proaches like Self-training [15], ASSEMBLE [16] and Semiare unseen during training (irrespective of it being latele
supervised MarginBoost [17]. However, a problem with thigr unlabeled), on the other hand, transductive algorithres a
strategy is that the introduction of examples with predictdimited to predicting only the labels of the unlabeled saespl
class labels may only help to increase the classification m&gen during training.
gin, without actually providing any novel information toeth ~ Graph-based approaches represent both the labeled and the
classifier. Since the selected unlabeled examples are #® dmlabeled examples by a connected graph, in which each
that can be classified confidently, they often are far away froexample is represented by a vertex, and pairs of vertices
the decision boundary. As a result, the classifier trained bBye connected by an edge if the corresponding examples
the selected unlabeled examples is likely to share the sahaye large similarity. The well known approaches in this
decision boundary with the original classifier that wasnteai category include Harmonic Function based approach [18],
only by the labeled examples. This is because by adjustifgectral Graph Transducer (SGT) [7], Gaussian processibase
the decision boundary, the examples with high classifinati@pproach [23], Manifold Regularization [12] and Label Rrop
confidence will gain even higher confidence. This implieggation approach [3], [4]. The optimal class labels for the u
that we may need additional guidance for improving the bakeled examples are found by minimizing their inconsisgen
classifier, along with the maximum margin criterion. with both the supervised class labels and the graph steictur
To overcome the above problem, we propose to use theA popular way to define the inconsistency between the
pairwise similarity measurements to guide the selection fabelsy = {y;} , of the sampleqx;}? ,, and the pairwise
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TABLE |

OF THE ALGORITHM, RESPECTIVELY

A SUMMARY OF SEMI-SUPERVISED CLASSIFICATION ALGORITHMS T AND | IN THE LAST COLUMN DENOTE TRANSDUCTIVE AND INDUCTIVE PROPERTY

Group Approach Summary ‘ T/ ‘
Label Propagation [3], [4]| Graph-based; Maximize label consistency using Graph Lealag T
Min-cuts [6] Edge-weight based graph-partitioning algorithm consingj nodes| T
Manifold Assumption with same label to be in same partition
MRFs [5], GRFs [18] Markov random field and Gaussian random field models T
LDS [19] TSVM trained on a dimensionality reduced data using grapgetha T
kernel
SGT [7] Classification cost minimized with a Laplacian regularizer

LapSVM [12]

SVM with Laplacian regularization

Cluster Assumption

Co-training [20]

Maximizes predictor consistency among two distinct featuesvs

Self-training [15]

Assumes pseudo-labels as true labels and retrains the model

SSMB [17]

Maximizes pseudo-margin using boosting

ASSEMBLE [16]

Maximizes pseudo-margin using boosting

Mixture of Experts [21]

EM based model-fitting of mixture models

EM-Naive Bayes [22]

EM based model-fitting of Naive Bayes

TSVM [10], S3VM [11]

Margin maximization using density of unlabeled data

Gaussian processes [23]

Bayesian discriminative model

Manifold & Cluster As-

SemiBoost (Proposed)

Boosting with a graph Laplacian inspired regularization

—|=|=|=]=]=]=]=]=]=]+

sumptions

similarities S, ; is the quadratic criterion, the decision boundary that passes through the region with
low density of unlabeled examples is preferred to the one
that is densely surrounded with unlabeled examples. These
methods specifically extend SVM or related maximum margin

) . ] ) ] classifiers, and are not easily extensible to non-margiedas
where L is the combinatorial graph Laplacian. Given a semjassifiers like decision trees. Approaches in this casegor
supervised setting, only a few labels in the above conmytgqndude transductive support vector machine (TSVM) [10],
measure are assum_ed to be _known, and the rest are Cons'dg'@ﬁi-supervised Support Vector Machine (S3VM) [11], and
unknown. The task is to assign values to the unknown label$ssian processes with null category noise model [23]. The
in such a way that the ovgrall |nconS|_stency is m'n'm'ze(ﬂyroposed algorithm, on the other hand, is a general approach
The approach presented in [6] considers the case WhgRich allows the choice of a base classifier well-suited ® th
y; € {£1}, thereby formulating it as a discrete optlm|zat|or§.peciﬁC task.

problem and solve it using a min-cut approach. Min-Cuts ginay e note that the proposed approach is closely re-
are h‘?WG"ef pr(_)qe_to deg.enerate. solgtlons, and hencg Ig}ﬁd to the family of ensemble approaches for semi-supeavi
objective was minimized using a mixed integer programming, ning Ensemble methods have gained significant pafular
approach in [24], which is computationally prohibitive [11 n4er the realm of supervised classification, with the ati

A continuous relaxation of this objective function, wher<?t of algorithms such as AdaBoost [25]. The semi-superise
yi € [0,1] has been considered in several approaches, Whichi e parts of ensemble algorithms rely on the cluster
is solved using Mgrkov rz_andom fields [5], Gaussian randoﬁésumption, and prime examples include ASSEMBLE [16]
fields and harmonic funcuon; [18]. and Semi-supervised MarginBoost (SSMB) [17]. Both these
The proposed framework is closely related to the graphyorithms work by assigning a pseudo-label to the unlabele
based approaches in the sense that it utilizes the PainViSiyples, and then sampling them for training a new supetvise

similarities for semi-supervised leamning. The incomisy ¢|assifier. SSMB and ASSEMBLE are margin-based boosting
measure used in the proposed approach follows a similg

oot g we dE)orithms which minimize a cost function of the form
definition, except that an exponential cost function is use
instead of a quadratic cost for violating the labels. Unlikest
graph-based approaches, we create a specific classification
model by learning from both the labeled and the unlabelethere H is the ensemble classifier under construction, @nd
examples. This is particularly important for semi-supsed is a monotonically decreasing cost function. The teti («;)
improvement, whose goal is to improve a given supervisedrresponds to the margin definition for labeled samples. A
learning algorithm with massive amounts of unlabeled datamargin definition involves the true labgl, which is not avail-

The approaches built on cluster assumption utilize the uable for the unlabeled samples. A pseudo-margin definigon i
labeled data to regularize the decision boundary. In paaic used such a$H (z;)| in ASSEMBLE, or H(z;)? in SSMB,

J(H) = CyiH (2:)) + C(|H(z:)]),



o Start With an _empty ensemble. samples, and assign the labels to unlabeled samples such tha
« At each iteration, . _ they are consistent with the similarity. In the semi-sujzd
— Compute the peusdolabel (and its confidence) improvement problem, we aim to build an ensemble classifier

for each unlabeled example (using existing en- which utilizes the unlabeled samples in the way a graph based
semble, and the pairwise similarity). approach would utilize.

— Sample most confident pseudolabeled examples;
combine them with the labeled samples and

train a component classifier using the supervised B. SemiBoost

learning algorithmA. To improve the given learning algorithd, we follow the

— Update the ensemble by including the compo- idea of boosting by running the algorithrd iteratively. A
nent classifier with an appropriate weight. new classification model will be learned at each iteration
using the algorithmA, and the learned classification models

anlghtz. - An outline of the SemiBoost algorithm for semi-supsed improve- at different iterations will be linearly combined to formeth

final classification model.

1) Objective function: The unlabeled samples must be
assigned labels following two main criteria: (a) the pointth
high similarity among unlabeled samples must share the same
label, (b) those unlabeled samples which are highly similar
to a labeled sample must share its label. Our objective func-
tion F(y,S) is a combination of two terms, one measuring
the inconsistency between labeled and unlabeled examples
’,}7( ,S), and the other measuring the inconsistency among
fbedunlabeled exampleB, (y., S).

Inspired by the harmonic function approach, we define
aFu(y,S), the inconsistency between class labglsaand the
similarity measuremen$, as

thereby getting rid of they;, term in the objective function
using the fact thay; € {£1}. However, the algorithm relies
on the prediction of pseudo-labels using the existing eb$em
classifier at each iteration. In contrast, the proposedritihogo
combines the similarity information along with the classifi
predictions to obtain more reliable pseudo-labels, whigh
notably different from the existing approaches. SSMB on t
other hand requires the base learner to be a semi-supervi
algorithm in itself [17], [16]. Therefore, it is solving aftérent
problem of boosting semi-supervised algorithms, in cattr
with the proposed algorithm.

In essence, the SemiBoost algorithm combines the advan- u
tages of graph based and ensemble methods, resulting in Fulyuw,S) = Y Sijexp(y —yl). 1)
a more general and powerful approach for semi-supervised ij=1

learning. Many objective functions using similarity or kernel mag;
require the kernel to be positive semi-definite to maintaim t
[Il. SEMI-SUPERVISED BOOSTING convexity of the objective function (e.g., SVM). However,
We first describe the semi-supervised improvement problegiice exp(z) is a convex functioh and we assume that

formally, and then present the SemiBoost algorithm. S ; is non-negativevi, j, the function F,(y,, S) is convex
irrespective of the positive definiteness of the similamitgtrix.

This allows similarity matrices which are asymmetric (e.g.
) . similarity computed using KL-divergence) without chargin
Let D = {x;,xs,...,X,} denote the entire dataset, Ny, convexity of the objective function. Asymmetric simif

cluding both the labeled and the unlabeled examples. SyRatices arise when using directed graphs for modeling clas
polse lthat thle first, examples are labeled, given by = gification problems, and are shown to perform better in rerta
(¥1:¥5, - -+ Yn, ), Where each class labef is either+1 or applications related to text categorization [26].

—1. We denote by, = (y1,y3,---,¥y,), the imputed class 15,9 our approach can work for general similarity
labels of unlabeled examples, whetg = n —n;. Let the  apices we assume that the similarity matrix provided is

labels for the entire dataset be denot.edy_as'z .[yl;yu].. symmetric. Note that Eq (1) can be expandediady., S) =
Let S = [S;,]nxn denote the symmetric similarity matr|x,%zsj7iexp(y? —yi) + 3 2 Sijexp(yf —yy), and due to
where S; ; > 0 represents the similarity betweety and ¢ o symmetry ofS, we have

x;. Let A denote the given supervised learning algorithm. '

The goal of semi-supervised improvement is to improve the _ “ “

performance ofA iteratively by treatingA like a black box, Fulyw,5) = 2—:1 Sij cosh(y’ —yj), @

using the unlabeled examples and the pairwise similatith "=

brief outline of the SemiBoost algorithm for semi-supeeds where cosh(y; — y;) = (exp(—y; + y;) + exp(y; — y;))/2

improvement is presented in Figure 2. is the hyperbolic cosine function. Note thabdsh(z) is a
It is important to distinguish the problem of semi-supegdis convex function with its minimum att = 0. Rewriting

improvement from the existing semi-supervised classificat Eq (1) using thecosh(.) function reveals the connection

approaches. As discussed in section 2, any ensemble based

algorithm must rely on the pseudo-labels for building the 10ur choice ofF'(y, S) is a mixture of exponential loss functions, and is

. . mptivated by the traditional exponential loss used in Bowséind the resulting
next classifier in the ensemble. On the other hand, gra@ﬁJ

: o i e margin classifier. However, Any convex (monotonic) fosstion should
based algorithms use the pairwise similarities between tlerk with the current framework.

A. Semi-supervised improvement

Ny



between the quadratic penalty used in the graph Laplaci@n Algorithm

based approaches, and the exponential penalty used in the derive the boosting algorithm using the bound opti-
current approach. Using @sh(.) penalty not only facilitates ization approach. An alternate, conventional way to deriv
the derivation of boosting based algorithms but also iB®8a the poosting algorithm using the Function Gradient method
the classification margin. The utility of an exponentialtdos ;g presented in [29]. This method may also be viewed as a

boosting algorithms is well known [27]. relaxation that approximates the original objective fioct
The in_consi§tency between labeled and unlabeled examp@sa linear function. Such an approach however, involves
F(y,S) is defined as specification of a parametric step size. In our derivatibie, t
n - n step size is automatically determined thus overcoming the
Fi(y,8) =YY Si;exp(—2ylyt). (3) difficulty in determining the step-size. SemiBoost aldurit
i=1 j=1 is briefly summarized in Figure 3.

Combining Egs (1) and (3) leads to the objective function, Let A)(x) : X — {—1,+1} denote the 2-class classifica-
tion model that is learned at theh iteration by the algorithm
F(y,8) = F(y,5) + CFu(yu, 5)- 4 A Let H(x) : X — R denote the combined classification

The constaniC' is introduced to weight the importance bemodel learned after the firét iterations. It is computed as a
tween the labeled and the unlabeled data. Given the ohgectifpear combination of the firsI" classification models, i.e.,
function in (4), the optimal class labey, is found by T
minimizing F. H(x) = Zath(t)(X%

Let gl,i = 1,---,n; denote the labels predicted by the t=1

learning algorithm over the labeled examples in the tr@ninyhere,, is the combination weight. At thél’+1)-st iteration,
data. Note that in Eq (4), there is no term correspondingéo tf,,, goal is to find a new classifiér(x) and the combination

inconsistency between predicted labels of trt‘e labeled BBMRyeight o that can efficiently minimize the objective function
and their true labels, which would &, = > | exp(y,9!).

Adding this term would make the algorithm specialize t0 s |eads to the following optimization problem:
AdaBoost when no unlabeled samples are present. Since in

practice, there is a limited amount of labeled data avaslabl . o . ol (H. ‘
the Fj; term is usually significantly smaller thaF, and F,,, a,rl(gx?l;n 2 2 Sig XP(=2yi(H; + ahy))
, i1 =

and therefore is omitted in the formulation in Eq (4). "
selecting an even smaller subset of samples to train the + C Z S;.; exp(H; — H;) exp(a(h; — h;))(6)
classifier may not be effective. The current approach tbesef
includes the prediction on the labeled data in the form of
constraints, thereby utilizing all the available labeleatadat
each iteration of training a classifier for the ensemble. Thehere H, = H(x;) andh; = h(x;).
problem can now be formally expressed as, This expression involves products of variablesand h;,
. making it non-linear and hence difficult to optimize. The
min  F(y,S) . . L .
y L constraints, however, can be easily satisfied by includihg a
st =ypi=1--,m. )  the labeled samples in the training set of each component
This is a convex optimization problem, and therefore c&iassifier. To simplify the computation, we construct thpemp
be solved effectively by numerical methods. However, sin®ound of the objective function, described in Proposition 1
our goal is to improve the given learning algorithz by Proposition 1: Minimizing Eq (7) is equivalent to minimiz-
the unlabeled data and the similarity matSx we present a ing the function

4,3=1

s.t. h(xi) =yli=1,---,n, (7)

boosting algorithm that can efficiently minimize the objeet B N,
function F. The following procedure is adopted to derive the Fy o= ZGXP(—Qahi)pi + exp(2ah;)q; (8)
boosting algorithm. i=1

« The labels for the unlabeled samplg are replaced where

by the ensemble predictions over the corresponding data ny o o
sample. pi = Y Sije?Mis(y;, 1)+ 5 > 8t (9)
« A bound optimization based approach is then used to find j=1 j=1
the ensemble classifier minimizing the objective function. i _ oanl o
« The bounds are simplified further to obtain the sampling ¢ = ZSi,jemt(S(yj, -1+ 9 Z S; e (10)
scheme, and other required parameters. J=1 J=1

The above objective function is strongly related to severahdd(z,y) = 1 whenx =y and0 otherwise.
graph based approaches, manifold regularization and driseniProof SketchBy substitutingHd; < H; + ah; into F(y,S)
methods. A discussion on the relationship between SemiBoasd regrouping the terms, we obtain the desired result]
and several commonly used semi-supervised algorithmsTise quantitieg; and¢; can be interpreted as the confidence
presented in the Appendices F and G of the longer versionclassifying the unlabeled exampteg into the positive class
of this paper [28]. and the negative class, respectively.



o Compute the pairwise similarity; ; between any
two examples.
« Initialize H(x) =0
o FOrt=1,2,...,T
— Computep; and ¢; for every example using
Equations (9) and (10)
— Compute the class labe} = sign(p; — ¢;) for
each example
— Sample example&; by the weight|p; — ¢|
— Apply the algorithmA to train a binary classi-

class labels;

— Computea, using Equation (11)

— Update the classification function d$(x) «—
H(x) + aihi(x)

Fig. 3. The SemiBoost algorithm

fier hy(x) using the sampled examples and thgi

r

which is very similar to the weighting factor of AdaBoost,
differing only by a constant factor 05 Also, if AdaBoost
encounters a situation where the base classifier has an error
rate more than random, i.e;;; > % it returns the current
classifier H;. This situation has a direct correspondence with
the condition in SemiBoost where the algorithm stops when
a < 0. From Eq (11) (or rather directly from Eq (12)), we
can see that this happens only when the denominator exceeds
the numerator, which means; > % is equivalent to the
condition o < 0. However, since this condition may not be
satisfied until a large number of classifiers are trainedallysu
there is a parameter specifying the number of classifiers to
be used. It has been empirically determined that using a fixed
number (usually 20) of classifiers for AdaBoost gives good
performance [27].

The sampling scheme used in SemiBoost is significantly
different from that of AdaBoost. AdaBoost knows the true
labels of the data, and hence can proceed to increase/decrea
the weights assigned to samples based on the previous itera-

The expression in Eq (8) is difficult to optimize since thgon, |n SemiBoost we do not have the true class labels for
weight a and the classifieri(x) are coupled together. Wethe ynlabeled data, which makes it challenging to estinfae t
simplify the problem using the upper bound stated in thgficulty of classification. However, Proposition 2 gives the

following proposition.

Proposition 2: Minimizing Eq (8) is equivalent to minimiz-

result that selecting the most confident unlabeled data lesmp
is optimal for reducing the objective function. Intuitiyel

ing using the samples with highly confident labeling is a good

— o ) L il choice because they are consistent with the pairwise sityila

Fy < Z(pi +q)(e +e " —1) - Z2ahi(pi — ). information along with their classifications. The valuespef
=1

i=1

andg; tend to be large if (i)x; can't be classified confidently,

Proof: See [28]. |

We denote the upper bound in the above equatiodby
Proposition 3: To minimize F,, the optimal class label;

for the examplex; is z; = sign(p; — ¢;), and the weight for

sampling examplex; is [p; —qg;|. The optimalx that minimizes

i.e., |H;| is small, and one of its close neighbors is labeled.
This corresponds to the first term in Eq. (9) and Eq. (10).
(i) the examplex; is highly similar to some unlabeled
examples that are already confidently classified, i.e.elajg
and |H;| for unlabeled example:;. This corresponds to the

Fqis second term in Eq. (9) and Eq. (10). This indicates that the
1 e pid(he 1) + S5 qid(hi, —1 similarity information plays an important role in guidinget
a=—In iz Pidli 1) 2.0y 4 ) (11) sample selection, in contrast with the previous approalikes

4 iy pid(hi, —1 i qid(hiy 1)
Lt P _( _ )+ ity a0 1) _ _ASSEMBLE and SSMB, where the samples are selected to

Proof Sketch Expression in Eq 11 can be obtained by difincrease value ofH;| alone.
ferentiating > w.r.t o and setting it equal to 0. Observe that similar to most boosting algorithms, we can show that
the above function is linear in;(p; — ¢;) and is minimized the proposed semi-supervised boosting algorithm redues t
when we choosé,; = sign(p; — ¢;), for maximum values of original objective functionF exponentially. This result is
pi — ail- - o _ . _ summarized in the following Theorem.

Propositions 1-3 justify the relaxations made in the deriva Theorem 1:Let a1, ..., be the combination weights that
tion of the SemiBoost. At each relaxation, the “touch-pbinty o computed by running the SemiBoost algorithm (Fig 1).

is maintained between the objective function and the Uppghen, the objective function &t + 1)st iteration, i.e.,Fy,1,
bound. As a result, the procedure guarantees: (a) the @byounded as follows:

jective function always decreases through iterations dnd ( .
the final solution converges to a local minimum. For more
9 Fii1 < kgexp <—Z%‘> ,
=1
Moy

details, see [30]. Proposition 3 establishes the key ingnesi
required for a boosting algorithm. Using these, the Sem#Boo
wherers = |>, (Z;ll Sij+CY0 5@;‘)} and~; =
Let ¢; be the weighted error made by the classifier, wherg,g(cosh(a;)).

algorithm is presented in Figure 3.
Doy pid(hy, =1) + 350 qid(hi, 1) Proof: See [28]. U
€ = S (pi + @) : The above theorem shows that the objective function follows
, ! an exponential decay, despite the relaxations made in theeab
As in the case of AdaBoost [29) can be expressed as .
P propositions.

a = tm (1 - et> Corollary 1: The objective function at(t + 1)st itera-
L=
4 €t

(12) tion is bounded in terms of the errof; as Fi;1 <



Proof Sketcétt] an be verified by substituting Eq. (12) for performance of the algorithm [18]. We set the scale paramete

in Theorem 1.  to the similarity values at the0-th percentile to the 100-
In the above derivation, we constrained the objective funi! Percentile, varied in steps of 10, whegg is the average

tion such that the prediction of the classifier on the label&@/Ue of the similarity matrixs. Experimentation revealed that

samples must match the true labels provided. However, if tHi transductive and inductive performances are stabléhéor

true labels are noisy, the resulting semi-supervised ifilass CNOSen range of. This is a desirable property given the fact

might not perform its best. An algorithm similar to SemiBbogat choosing the right scale parameter is a difficult proble

may be derived in such a case by including a term penalizing

the solution, if the predicted labels of the labeled samples IV. RESULTS AND DISCUSSION

different from the true labels. In this paper, we assume that_l_h ; ¢ SemiB _ . .

the given labels are correct. This is reasonable given ttie fa. e focus of SemiBoost is to improve any given (super-

that there are very few labeled samples, one can ensure tI)(é?Fd) F:Ia§S|f|er using the unlabeled data. Therefore, odr p
correctness without much difficulty. mary aim is to evaluate SemiBoost based on the improvement

achieved in the inductive performance of base classifiers.
) An illustration of improvement in the performance of a

D. Implementation supervised learner (Decision Stump) using SemiBoost on the

1) Sampling: Sampling forms the most important stegring-norm” dataset is shown in Figure 4. The dataset has 2
for SemiBoost, just like any other boosting algorithm. Thelasses, with 500 samples each. There are 10 labeled samples
criterion for sampling usually considers the followinguss: per class, indicated usingl{ A). The solid line shows the
(a) How many samples must be selected from the unlabeldecision boundary and the dark and light regions indicate
samples available for training? and (b) What is the distidiout the two class regions. The performance of SemiBoost at each
according to which the sampling must be done? iteration is given in parentheses below each of the plota/sho

Supervised boosting algorithms like AdaBoost have the triiéggures 4(a)-(c) show the classifier obtained by SemiBoost
labels available, which makes it easy to determine whie the first three iterations, and Figure 4(d) shows the final
samples to choose or not to choose. On the other hand, dt&ssifier obtained at the 12 iteration.
labels assigned during the SemiBoost iteration are pseudo
labels, and may be prone to errors. This suggests that we
should choose only the top few most confident data poir)tgs Datasets
for SemiBoost. But selecting a small number of samples SemiBoost was evaluated on 16 different datasets: 4 bench-
might make the convergence slow, and selecting too largenark datasets provided in [9], 10 UCI datasets and 2 datasets
sample might include non-informative or even poor samplé&®om ethnicity classification from face images [31] and tegt
into the training set. The choice currently is made emplisica classification [32]. Since SemiBoost is applicable for wlass
selecting top 10% of the samples seem to work well iproblems, we chose the two-class datasets from these bench-
practice. From Proposition 3, to redudg, it is preferable mark datasets. The multiclass datasets in UCI are converted
to select the samples with a large value |pf — ¢;|. This into two-class datasets by choosing the two most populated
selection provides highly reliable pseudo-labeled sampie classes. The name of the dataset used, the classes chosen,
the classifier. The sampling is probabilistically done adowy the number of samples present in the selected classesd

Ks Hf,l 16::)1/4 known that the choice ofr has a large impact on the

to the distribution, the dimensionality of the dataset are summarized in the
Ipi — gil first column in Table Il. In addition to this, we evaluated
Py(x;) = ﬁ, the proposed approach on text categorization problemssevho
=1 17 ?

results are presented in the next section.
where P;(x;) is the probability that the data point; is The transductive performance of semi-supervised learning
sampled from the transduction set. algorithms is well-studied [9, Chapter 21]. However, semi-
2) Stopping Criterion: According to the optimization pro- supervised learning is not limited to transductive leagnend
cedure, SemiBoost stops whan< 0, indicating that addition out-of-sample extensions have attracted significant @b@n
of that classifier would increase the objective functiortéagl In fact, inductive learning is important given that only a
of decreasing it. However, the value @fdecreases very fastportion of the unlabeled samples are seen during the tiinin
in the beginning, and eventually the rate of decrease fapihase. The real utility of learning in such cases lies in the
down, taking a large number of iterations to actually make dtbility to classify unseen test samples. With this motmati
negative. We currently use an empirically chosen fixed numbge compare the performance of SemiBoost with three state-
of classifiers in the ensemble, specified as a pararniét®ve of-the-art inductive semi-supervised algorithms: Trarside
set the value ofl” = 20. SVM [7], an inductive version of Low Density Separation
3) Similarity Matrix: We use the Radial Basis Function(LDS) [8] and Laplacian-SVM from the Manifold Regular-
similarity inspired from its success in graph based apgresc ization approach [12]. LDS is not an inductive algorithm as
For any two samples; andx;, the similarityS; ; is computed it involves a graph-based dimensionality reduction step. W
as,S; ; = exp(||x; —x;|3/0?), whereo is the scale parameteruse the labels predicted by the LDS on the transduction set to
controlling the spread of the radial basis function. It isllwetrain an inductive classifier on the original data.
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(a) Iter. 1, (65.0%) (b) Iter. 2, (76.5%) (c) lter. 3, (86.4%) (d) Iter. 12, (94.6%)
Fig. 4. Decision boundary obtained by SemiBoost at iteratibrn2, 3 and 12, on the two concentric rings dataset, usingsidacStump as the base classifier.

There are 10 labeled samples per clasaj. The transductive performance (i.e., performance on thebahtd data used for training) of SemiBoost is given
at each iteration in parentheses.

& e

B. Experimental setup individual classification problem, but to show the possible
The experimental setup aims to study the improvement ifijProvementin the performance of supervised classifiergus
performance obtained on a supervised learner, by using unpgmiBoost on all the classification problems. Results ateic
beled data and the performance of the SemiBoost algoritifft SemiBoost significantly improves the performance bf al
with three state of the art semi-supervised learning algos. the three base classifiers for nearly all the datasets. Using
We use classification accuracy as the evaluation measdpélependent sample paired t-test, we observed that SerstiBoo
The mean and standard deviation of % accuracy are repor&@nificantly improved the performance of Decision Stump on
over 20 runs of each experiment, with different subsets &2 out of 16 datasets. The performance of J48 is improved
training and testing data. To measure the inductive perféignificantly on 13 out of 16 datasets, and there is a sig-
mance, we randomly split the dataset into two halves. We cgificant degradation on the house dataset. For SVM, there
them the training and test sets. The training set has 10ddbel® @ significant improvement in 7 out of 16 datasets, while
points and the rest unlabeled. The ensemble classifiertlegrn @ Significant degradation in 3 cases. The cases where SVM
SemiBoost on the training set is evaluated by its performan@egraded, the benchmark algorithms performed poor cordpare
on predicting the labels of the test set. to the supervised classifiers, suggesting that unlabeltdisla
SemiBoost samples the unlabeled data, labels them at eB€h helpful in these cases. The ensemble classifier obtained
iteration of boosting and builds a classifier(x). The number USing SemiBoost is relatively more stable, as its classifioa
of such classifiers built will depend on the number of itenagi @ccuracy has lower standard deviation when compared to the
T in boosting.T was set to 10 and we stop the boosting wheb@se classifier.

weightsa, computed from Eq (11) become negative. We set 2y performance comparison of SemiBoost with Benchmark
the value ofC in the objective function Eq (4) to be the ratio OfAIgorithms: Performance of SemiBoost is compared with
number of labeled samples to the number of unlabeled sampi§$e gifferent algorithms, namely TSVM, LapSVM and ILDS
C= ”l/_nu- ] ) _ _ (inductive version of the LDS algorithm). SemiBoost ackigv
The first experiment studies the improvement in the perfiarformance comparable to that of the benchmark algorithms
mance of three different base classifiets(&)) after apply- semiBoost performs better than ILDS on almost all the
ing SemiBoost: Decision Stump (DS), the J48 decision tre@asets, and significantly better on 4 of the datasets, i usi
algorithm (J48), and the Support Vector Machine with thgecision Stump and 2 using SVM as the base classifier.
sequential minimal opt|m|_zat|on (SVM) algorithm. Soft\p_ar SemiBoost significantly outperforms TSVM on 10 out of
WEKA [33] was used to implement all the three classifiers.g gatasets using SVM, and 8 out of 16 datasets using
All the aIgonthms. are run with their default parametersrj(e.Decision Stump. Also, TSVM had difficulty converging on
default C and a linear kernel was used for SVM algorithmijyree datasets in a reasonable amount of time (20 hours): Sem
We chose decision trees (DS and J48) and SVM as the bagR)st performs comparably to LapSVM; SB-DS outperformed
classifiers because they are shown to be successful in fhg sy significantly on 2 datasets, and performed worse than
supervised learning literature, for varied learning tasks LapSVM on 1. Similarly, SB-SVM and LapSVM significantly
outperform each other on 3 out of the 8 cases.

C. Results There are datasets where one of the base classifiers outper-
1) Choice of base classifierTable 1l compares the super-forms SemiBoost. But in these cases, one of the base classifie
vised and the three benchmark semi-supervised algoritbmstitperforms all the semi-supervised algorithms (e.g., SVM
the SemiBoost algorithm. The columns DS, J48 and SVbutperforms all the algorithms on COIL2, vehicle, sat and
give the performances of the base classifiers on the inductivouse datasets). This indicates that the unlabeled data do
set. The columns SB-X give the inductive performances abt always improve the base classifier, or in general, are
SemiBoost with base classifier X. The last three columns ot guaranteed to help in the learning process. When a base
Table 1l correspond to the inductive performances of bencblassifier outperforms the semi-supervised learning dlguos,
mark semi-supervised algorithms TSVM, LDS and LapSVMwve observed that the SemiBoost tends to perform close to the
Note that the idea is not to build the best classifier fdraseline compared to the others in most cases.



TABLE Il

INDUCTIVE PERFORMANCE OFSEMIBOOST AND THE THREE BENCHMARK ALGORITHMS THE FIRST COLUMN SHOWS THE DATASET AND THE TWO

CLASSES CHOSENTHE NUMBER OF SAMPLESn AND THE DIMENSIONALITY d ARE SHOWN BELOW THE NAME OF EACH DATASET THE ALGORITHMS

CHOSEN AS BASE CLASSIFIERS FOR BOOSTING ARRECISION STUMP (DS), DECISION TREE (J48)AND SUPPORTVECTORMACHINE (SVM). FOR

EACH ALGORITHM, THE SB- PREFIXED COLUMN INDICATES USING THESEMIBOOST ALGORITHM ON THE BASE CLASSIFIER THE COLUMNS TSVM,
ILDS AND LAPSVM SHOW THE INDUCTIVE PERFORMANCE OF THE THREE BENCHMARK ALGORHMS. A ‘-’ INDICATES THAT WE COULD NOT FINISH

RUNNING THE ALGORITHM IN A REASONABLE TIME (20 HOURS) DUE TO CONVERGENCE ISSUESEACH ENTRY SHOWS THE MEAN CLASSIFICATION

ACCURACY AND STANDARD DEVIATION (IN PARENTHESEY OVER 20 TRIALS.

Dataset (classed) DS | SB-DS| J48 | SB-J48|[ SVM | SB-SVM || TSVM | ILDS | LapSVM
(n,d)

Digitl (1,2) 57.15| 78.09 || 57.21| 74.97 || 74.81| 77.89 || 7952 | 79.53 | 74.06
(1500, 241) (70) | 36) | 71 | 43) || 62 | (46) (5.0) | (7.0) | (4.1
COIL2 (1,2) 55.14 | 55.84 || 54.81 | 55.27 || 59.75| 55.42 || 50.23 | 54.62 | 55.64
(1500, 241) B1) | (40) | B4 | 29 | 33| @3) 49) | 40) | (5.6)
BCI(1,2) 51.27 | 49.38 || 51.42 | 50.67 || 52.45| 52.02 || 50.50 | 50.73 | 54.37
(400, 117) 42 | 29 | 41| 38 || 31| 41 (36) | (24) | (3.6)
9241n (1,2) 50.73 | 5454 || 50.57 | 54.71 || 57.55| 57.93 || 51.14 | 50.25 | 53.65
(1500, 241) @B1) | 28 | @29 | 25 || (26)| 34 35) | 5 | (3.1)
austra (1,2) 60.39 | 73.46 || 60.12 | 73.36 || 65.64| 71.36 | 73.38 | 66.00 | 74.38
(690, 15) (13.0)| (7.9) || @2.7)| (7.4 || (82 | (88) (12.6) | (145)| (8.7)
ethn (1,2) 65.72 | 66.42 || 64.98 | 63.98 || 67.04| 67.57 - 67.16 | 74.60
(2630, 30) 86) | 6.4) | (79 | (5.3) | 48 | (5.7) (16.7)| (5.8)
heart (1,2) 68.26 | 79.48 || 67.67| 78.78 || 7059 | 79.00 | 77.63 | 77.11| 77.96
(270, 9) (14.3)| (36) || (15.0)| (3.8) || (79 | (1) (6.6) | (96) | (4.8
wdbc (1,2) 79.47 | 88.98 || 75.95| 89.82 || 75.74| 88.82 | 86.40 | 85.07 | 91.07
(569, 14) (16.3)| (65) || 17.1)| 4.0) || (9.7) | (9.9) 86) | 87) | (3.4
vehicle (2,3) 60.48 | 69.31 || 60.89 | 70.25 || 78.28| 7229 || 63.62 | 66.28 | 71.38
(435, 26) @78) | 67) | 81 | 7.7 || 62 | (9.4 86) | 85 | (6.7)
texture (2,3) 95.67 | 98.90 || 89.46 | 98.50 || 98.44| 99.91 - 98.38 | 99.11
(2026, 19) (56) | 06) || (6.7) | (0.9) || 14| (0.1 (7.2) | (0.92)
uci image (1,2) | 89.64 | 100.00 || 87.03 | 99.79 || 99.92| 100.00 || 91.91 | 100 | 99.95
(660, 18) (11.2)| ©.0) || ©3) | (0.3) || (02 | (0.0) 82) | (0.0) | (0.2
isolet (1,2) 64.23 | 91.92 || 64.48| 90.20 || 89.58 | 95.12 | 90.38 | 92.07 | 93.93
(600, 51) (12.7)| 1) || 12.8)| (34) || (53) | (2.3) (8.0) | (11.4)| (3.4
mfeat fou (1,2) | 82.25 | 96.25 || 85.90 | 96.00 || 98.78| 99.85 | 95.32 | 96.5 | 100.00
(400, 76) 26) | 20 || (129 | @18 || 11| (0.3) (75) | 108 | (0.0
optdigits (2,4) | 65.91 | 93.22 || 65.59 | 93.33 || 90.31| 96.35 | 92.34 | 96.40 | 98.34
(1143, 42) (13.4)| (3.0) || 13.1)| (26) || 36) | (2.4 (9.0) | 11.1)| (2.9
sat (1,6) 82.77 | 85.99 || 83.80 | 86.55 || 99.13| 87.71 - 9420 | 99.12
(3041, 36) 5 | @7 || 61| 3.0 || 07)| (29 (14.2)| (0.5)
house (1,2) 94.83| 91.92 || 94.83| 91.34 || 91.16| 90.65 | 8655 | 89.35| 89.95
(232, 16) 6.0) | (39) || 6.0) | (33 || (38 | (28) @4 | 22) | 4.9

3) Performance with unlabeled data incremerfig. 5 It is observed that the performance of SemiBoost improves
shows the performance of SemiBoost on three of the UG@Giith the addition of more and more unlabeled data, whenever
datasets (Figs. 5 (a)-(c)) we used. Each dataset is sptit isuch an improvement is possible.

two equal part_s, one for_tr_aining and one for inductive tegti 4) Sensitivity to parameter: Fig. 6 shows the performance
Ten samples in the training se't are glways labeled, an.d' he SemiBoost-SVM, with varying value of the parameter
performance obtained on the inductive test set by trainiRgyma was chosen to be theth percentile of the distribution

an SVM with default parameters is shown with a dottegy gimijarities, withp varying between 10-th percentile to 100-
line in the plot. The rest of the (unlabeled) samples in tha Horcentile. Selecting the value of is one of the most
training set are added to the training set in units of 10%gicyit aspects of graph construction, and several héosis
The dashed line shows the performance obtained by the SYM\e heen proposed to determine its value. On most of the
classifier when all these added samples are labeled usiitg thetasets shown, SemiBoost is relatively stable with respec

ground truth. The solid line shows the performance of thg ihe scale parameter. However, a choicerdbetween 10-
SemiBoost algorithm, treating the added samples as usldbely, percentile to 20-th percentile of the similarity values i
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Fig. 5. Performance of baseline algorithm SVM with 10 labedachples, with increasing number of unlabeled samples addée taleled set (solid line),
and with increasing number of labeled samples added to thergaset (dashed line).
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Fig. 6. Performance of baseline algorithm SVM with 10 labedadnples, with increasing value of the parameterThe increments i are made by
choosing thep-th percentile of the similarities, wheyeis represented on the horizontal axis.

recommended, based on empirical observations. margin greedily are preferable to those that maximize the
minimum margin. Fig. 8 shows the distribution of the value

5) Margin and Confidenceln this experiment we empiri- of H(x;) over the iterations. The light and dark bars in the

cally demonstrate that SemiBoost has a tendency to maximiggtogram represent the classes 2 and 4, in the optdigaselat

the mean-margin. For unlabeled data, a popular definition @fspectively. Note that as iterations progress, the clagse

margin is|H (x;)| [16], [17]. The mean margin is the empiricalmore and more separated.

average of H(x;)| over the unlabeled data used for training.

Figs. 7((@)-(c)) show the mean-margin value on optdigits

dataset (classes 2,4) over the iterations using DecisiomSt

J48 and SVM as the base classifiers, respectively. The value

of the mean-margin increases over the iterations, irr¢iseec D. Convergence

of the choice of the base classifier. However, it is important

to note that the minimum margin may not increase at eachAccording to Theorem 1, SemiBoost converges exponen-

iteration, although the test error decreases. When thdrgaintially. The following section demonstrates the convergenc

data consists of a small number of labeled samples whioh SemiBoost on an example dataset. To illustrate the con-

can be perfectly classified, the margin is largely decided lgrgence, we chose the two most populous classes in the

the unlabeled data. Considering the margin over the urddbebptdigits dataset, namely digits 2 and 4. The change in the

data, the classifier at iteration 1 has a margincqf for objective function as new classifiers are added over itarati

all the unlabeled data, wheres at the second iteration, fteedemonstrated in Fig. 9(a). which follows an exponential

minimum margin ismin,, |H® (x;)| = |a; — az| < a1 = reduction. Fig. 9(b) shows the value afover the iterations.

miny, |[H® (x;)|. In fact, over the iterations, the value ofinitially, the value of o falls rapidly, and after around 20

minimum margin may be traded off to obtain a gain iiterations, the value is insignificantly small relative tmt of

the performance, i.e. being in agreement with the simylaritnitial classifiers. This suggests that although SemiBatifit

matrix. Recently, it was shown in [34] that maximizing theneeds more iterations to converge, the new classifiers added

value of minimum margin does not necessarily translate ito boosting will not significantly change the decision value

a better performance by the classifier. It is argued in th&g. 9(c) shows the accuracy of the SemiBoost with Decision

context of boosting that the approaches maximizing the mea&@tump as the base classifier, over the iterations.
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Fig. 7. The mean-margins over the iterations, on a single ruBesfiiBoost on optdigits dataset (classes 2,4), using diffdrase classifiers.
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Fig. 8. Distribution of the ensemble predictiof& (x;), over the unlabeled samples in the training data from opg&liataset (classes 2,4) at the iteration
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Fig. 9. Plots of (a) objective function, (k) value and (c) Accuracy of SemiBoost when run over two clasgg of the optdigits dataset using Decision
Stump as the base classifier. The accuracy of the base clagsi6ig.9%.

E. Comparison with AdaBoost From Table lll, we can see that the performance of Semi-

To evaluate the contribution of unlabeled data in improvinfgc’os’te_d versions of the classifiers (SB-DS, SB-J48, and SB-
the performance of a base classifier, we compared the perfa¥M) is significantly better than classifiers trained using

mance of SemiBoost with that of AdaBoost on the same ba@@ly labeled data, boosted (using AdaBoost) or unboosted
classifier (or weak learner) and using a similar experimen§oWs 1 and 2 for each classifier section). Naturally, when
procedure as in Section IV-B. Table Il shows the perfornean@!! the unlabeled data are labeled, the performance of the
of three base classifiers Decision Stump, J48 and SVM (sho@/assifiers and their boosted versions are significantliyebet

in column 1) on 6 datasets shown in the top row. For eadpan SemiBoost (rows 4 and 5). The reduction in the inductive
classifier, the first two rows show the inductive performanice Performance of AB-small compared to the base classifier on
the classifier and its boosted version (using AdaBoosthechi S€veral datasets may be attributed to the overfitting due to
on 10 labeled samples. The third row shows the performan@@all number of training samples. The addition of unlabeled
of SemiBoost when unlabeled data is added to the same 48 as a regularizing mechanism in SemiBoost avoids the
of labeled samples. The fourth and fifth rows, labelade overfitting, thereby achieving an improved classifier.

and AB-large show the performance of the classifier and its

boosted version trained after labeling the unlabeled ds¢a u

in SemiBoost.
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TABLE Il
PERFORMANCE OF DIFFERENT CLASSIFIERS AND THEIR BOOSTED VER3NS ON6 UCI DATASETS. X-SMALL STANDS FOR THE CLASSIFIER TRAINED ON
A SET OF10 LABELED SAMPLES CHOSEN FROM THE DATA THE PREFIXAB-X STANDS FORADABOOST WITH BASE CLASSIFIERX. SB-X STANDS FOR
SEMIBOOST WITH BASE CLASSIFIERX. X-LARGE STANDS FOR THE CLASSIFIER TRAINED BY LABELING ALL THE WINLABELED DATA USED IN SB-X.

Classifier | austra] bupa [ wdbc | optdigits | mfeat-fou | isolet |
small 60.39 | 54.94 | 79.47 65.91 82.25 64.23

AB-small 62.55 | 56.45| 70.02 63.20 77.62 64.82

Decision Stump| SemiBoost| 73.46 | 55.78 | 88.98 | 93.22 96.25 91.92
large 79.36 | 57.71 | 90.42 90.26 99.72 92.57

AB-large 81.70 | 68.44 | 94.44 99.98 99.72 97.68

small 60.12 | 54.97 | 75.95 65.59 85.90 64.48

AB-small 60.68 | 55.09 | 68.86 61.40 75.80 65.33

J48 SemiBoost| 73.36 | 54.74 | 89.82 93.33 96.00 90.20
large 79.97 | 62.49 | 92.68 97.18 99.12 92.90

AB-large 82.42 | 66.21 | 94.96 98.97 99.12 96.68

small 65.64 | 52.05| 75.74 90.31 98.78 89.58

AB-small 63.29 | 53.50 | 73.53 87.11 93.80 88.48

SVM SemiBoost| 71.36 | 54.02 | 88.82 96.35 99.85 95.12
large 85.57 | 58.15| 94.81 99.66 100.00 | 99.72

AB-large 84.29 | 65.64 | 95.89 99.65 100.00 | 99.72

V. PERFORMANCE ONTEXT-CATEGORIZATION « One-vs-one had been a popular approach for creating
multiclass classifiers. The testing time can be signifigantl
We further evaluate the SemiBoost algorithm on the Text reduced in a one-vs-one setting by using a DAG based
Categorization problem using the popular 20-newsgroups architecture [35].
dataset We performed the evaluation of SemiBoost algorithm . .
with Decision Stump, J48 and SVM as the base classifiers onWe generate all the.45_ possible bmary. problems of the 10
binary problems created using 10 most popular classes of ﬁ#%sses-_ Due to the limited space, we include only rgsults
20-newsgroups dataset. Note that this experimental sestupOn 10 binary problems createq from 5 of the classes in the
different from some other studies of semi-supervised iegrn 2. newsgroups, summarized in Table 1V, These results are

in which the one-vs-rest approach is used for evaluatiofj 1ar to the results on the 45 binary problems.The first

Compared to one-vs-rest, the one-vs-one evaluation has ¢RUmMN in Table 1V shows the classes chosen for creating the
following advantages: ’ binary problems. Each classification task contains a datase

of approximately 2000 documents. We use the popular tf-idf

« There is a large variation in the best performing sifeatures computed over the words which occur at least 10
pervised classifier for the binary tasks. This enables Hges in total, in all the 2000 documents. The tf-idf feature
to show that when SVM is not the best classifier fogre later normalized per document. The dimensionality ef th
a problem, then the methods that improve SVM usingach dataset is shown in column 2 of Table IV. We follow the
unlabeled data may not be the best semi-supervisegme inductive evaluation procedure as in Section IV-B. We
algorithms to use. use 2 labeled samples per class in training the classifieus#le

« Semi-supervised learning algorithms rely on certain aghe linear kernel (dot product between the feature vectss)
sumptions about the structure of the data and the classgifilarity, popular for the text classification tasks. Theltic-
In one-vs-rest approaches, these assumptions are likg}¢ performance of the different algorithms Decision Spym
to be violated. For instance, many semi-supervised algmg, SVM and their SemiBoosted versions, Transductive SVM,
rithms assume a large cluster gap between two classggjuctive LDS, Laplacian SVM are shown in Table IV. To
By aggregating multiple classes into one negative claggiow a fair comparison, the parameter valtiefor all SVMs

we expect to see a large cluster gap amongst the negaiiy/get to 1. The mean and standard deviation of the perforenanc
class itself. Violation of the manifold assumption can bgver 20 runs of the experiment is reported.

explamed smﬂqnly. ) Table IV shows that in the case of Decision Stump and
« There is a high imbalance in the data when we do a ongzg - semiBoost significantly (at a 95% confidence level,
vs-rest classification. While a knowledge of priors may bgeaqyred using independent sample paired t-test) improves
used to incorporate this imbalance into semi-supervisgeh yerformance on all the pairs of classes. The performance
learning to achieve high performance, we assume sy is improved significantly on 5 out of 10 class pairs.
nothing is known about the data other than the similaritys, \ve notice that SemiBoosted Decision stump performs
information and a few training examples. signficantly better than SemiBoosted SVM on all the pairs
of classes. Comparing the SVM based methods, SB-SVM
2http://people.csail. mit.edu/jrennie/20Newsgroups/ significantly outperforms LapSVM on 7 class pairs and ILDS
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TABLE IV
COMPARISON OF THE INDUCTIVE PERFORMANCEMEASURED AS% ACCURACY) OF SEMIBOOST, TSVM, ILDS AND LAPSVM ON PAIRWISE BINARY
PROBLEMS CREATED FROMS CLASSES OF THE20-NEWSGROUPS DATASET

Classes] DS | SBDS| J48 | SB J48] SVM | SB SVM | TSVM | ILDS | LapSVM
(d)
1,2 55.82 | 82.30 | 56.93| 72.86 | 71.02| 70.74 | 75.44 | 55.10 | 68.23
(3736) | (14.0)| (12.3) | (155)| (8.0) | 87) | (5.6) | (13.2) | (16.6)| (3.9)
1,3 5461 | 85.95 | 56.24 | 77.05 | 72.17| 74.83 | 89.34 | 58.88 | 71.34
(3757) | (10.6) | (9.6) | (10.7)| (8.0) | (82) | (5.4) (5.9) | (20.2)| (4.8)
1,4 51.35 | 87.36 | 54.71 | 80.65 | 77.22| 78.47 | 88.71 | 61.72| 74.67
(3736) | (7.1) | (11.4) | (13.4)| (5.7) | (9.0) | (3.6) 68) | 9.4) | (3.1
1,5 55.72 | 91.37 | 57.55 | 86.65 | 74.84| 8264 | 92.35 | 66.45| 78.01
(3979) | (11.4)| (7.8) | (12.6)| (6.7) | (9.8) | (4.3) (55) | (16.7)| (4.1)
2,3 4894 | 73.33 | 49.43| 6452 | 63.12| 64.06 | 66.05 | 50.76 | 61.68
(4154) | (23) | (11.6) | (21) | 78) | 52) | @5 | (10.6) | (1.8) | (3.8)
2,4 49.60 | 88.43 | 49.40 | 78.07 | 69.47| 7485 | 8150 | 50.32| 70.95
(4143) | @0) | (95) | (38) | (.0) | 7.0)| B2 | (135 | @1 | 3.2
2,5 49.38 | 94.65 | 49.24 | 83.87 | 71.62| 80.12 | 84.94 | 53.94 | 74.79
(4406) | (1.9) | (6.5) | (1.6) | (6.0) | (6.6) | (4.8) | (12.4)| (73) | (3.4)
3,4 51.16 | 90.22 | 51.46 | 77.34 | 72.22| 7526 | 81.98 | 50.08 | 71.45
(4130) | B1) | (86) | 37| 72 | G4 | G1 | 127 | @7 | 3.8
3,5 51.67 | 92.93 | 51.71 | 81.16 | 73.65| 7831 | 77.38 | 53.83 | 74.91
(4426) | (40) | (65) | (4.9 | 7.0 | 83) | B9 | (162 | 1) | 4.2
4,5 51.68 | 7951 | 51.53 | 68.27 | 62.08| 68.07 | 67.54 | 52.39 | 65.05
(4212) | 41) | (115) | (39 | (84 | 658 | 3) | (127)| 65 | (5.0

on all the 10 pairs. TSVM outperforms SB-SVM on 5 out ACKNOWLEDGEMENTS

of 10 class pairs. Overall, SB-SVM performs comparable to i i

TSVM and significantly better than LapSVM and ILDS. SB- We thank the anonymous reviewers for their valuable com-
DS outperforms TSVM significantly on 5 out of 10 clasdnents. The research was partially supported by ONR grant no.

pairs, and LapSVM and ILDS on all the class pairs. Th000140710225 and NSF grant no. [1S-0643494.

poor performance of ILDS may be ascribed to the kernel used
by ILDS. ILDS uses a graph distance based kernel, which
may not be as suitable for text classification based tasks as a
linear kernel. From our experiments, we see that SemiBugpsti
Decision Stumps is a viable alternative to the SVM basebl]
semi-supervised learning approaches. 2]
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