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Abstract—Semi-supervised learning has attracted a significant
amount of attention in pattern recognition and machine learning.
Most previous studies have focused on designing special algo-
rithms to effectively exploit the unlabeled data in conjunction
with labeled data. Our goal is to improve the classification
accuracy ofany given supervised learning algorithm by using the
available unlabeled examples. We call this as theSemi-supervised
improvement problem, to distinguish the proposed approach
from the existing approaches. We design a meta-semi-supervised
learning algorithm that wraps around the underlying supervised
algorithm, and improves its performance using unlabeled data.
This problem is particularly important when we need to train a
supervised learning algorithm with a limited number of labeled
examples and a multitude of unlabeled examples. We present
a boosting framework for semi-supervised learning, termed as
SemiBoost. The key advantages of the proposed semi-supervised
learning approach are: (a) performance improvement of any
supervised learning algorithm with a multitude of unlabeled data,
(b) efficient computation by the iterative boosting algorithm,
and (c) exploiting both manifold and cluster assumption in
training classification models. An empirical study on 16 different
datasets, and on text categorization demonstrates that the pro-
posed framework improves the performance of several commonly
used supervised learning algorithms, given a large number of
unlabeled examples. We also show that the performance of the
proposed algorithm, SemiBoost, is comparable to the state-of-
the-art semi-supervised learning algorithms.

Index Terms—Machine learning, Semi-supervised learning,
Semi-supervised improvement, Manifold assumption, Cluster
assumption, Boosting

I. I NTRODUCTION

Semi-supervised learning has received a significant interest
in pattern recognition and machine learning. While semi-
supervised classification is a relatively new field, the ideaof
using unlabeled samples for prediction was conceived several
decades ago. The initial work in semi-supervised learning is
attributed to H. J. Scudders for his work on “self-learning”
in 1965 [1]. An earlier work by Robbins and Monro [2] on
sequential learning can also be viewed as related to semi-
supervised learning. The key idea of semi-supervised learning,
specifically semi-supervised classification, is to exploitboth
labeled and unlabeled data to learn a classification model.
Enormous amount of data is being generated everyday in the
form of news articles, documents, images and email to name a
few. Most of the generated data is uncategorized or unlabeled,
thereby making it difficult to use supervised approaches to
automate applications like personal news filtering, email spam
filtering, and document and image classification. Typically,
there is only a small amount of labeled data available, for
example, based on which articles a user marks interesting, or
which email he marks as spam, but there is a huge amount
of data that has not been marked. As a result, there is an
immense need for algorithms that can utilize the small amount

of labeled data, combined with the large amount of unlabeled
data to build efficient classification systems.

Existing semi-supervised classification algorithms may be
classified into two categories based on their underlying as-
sumptions. An algorithm is said to satisfy themanifold as-
sumption if it utilizes the fact that the data lie on a low-
dimensional manifold in the input space. Usually, the un-
derlying geometry of the data is captured by representing
the data as a graph, with samples as the vertices, and the
pairwise similarities between the samples as edge-weights.
Several graph based algorithms such as Label propagation [3],
[4], Markov random walks [5], Graph cut algorithms [6],
Spectral graph transducer [7], and Low density separation [8]
proposed in the literature are based on this assumption.

Several algorithms have been proposed for semi-supervised
learning which are naturally inductive. Usually, they are based
on an assumption, called thecluster assumption[9]. It states
that the data samples with high similarity between them, must
share the same label. This may be equivalently expressed as
a condition that the decision boundary between the classes
must pass through low density regions. This assumption al-
lows the unlabeled data to regularize the decision boundary,
which in turn influences the choice of classification models.
Many successful semi-supervised algorithms like TSVM [10]
and Semi-supervised SVM [11] follow this approach. These
algorithms assume a model for the decision boundary, resulting
in an inductive classifier.

Manifold regularization [12] is another inductive approach,
that is built on the manifold assumption. It attempts to build a
maximum-margin classifier on the data, while minimizing the
corresponding inconsistency with the similarity matrix. This
is achieved by adding a graph-based regularization term to
an SVM based objective function. A related approach called
LIAM [13] regularizes the SVM decision boundary using a
priori metric information encoded into the Graph Laplacian,
and has a fast optimization algorithm.

Most semi-supervised learning approaches design special-
ized learning algorithms to effectively utilize both labeled
and unlabeled data. However, it is often the case that a
user already has a favorite (well-suited) supervised learning
algorithm for his application, and would like to improve its
performance by utilizing the available unlabeled data. In this
light, a more practical approach is to design a technique to
utilize the unlabeled samples, regardless of the underlying
learning algorithm. Such an approach would accommodate for
the task-based selection of a classifier, while providing itwith
an ability to utilize unlabeled data effectively. We refer to
this problem of improving the performance ofany supervised
learning algorithm using unlabeled data asSemi-supervised
Improvement, to distinguish our work from the standard semi-
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Fig. 1. Block diagram of the proposed algorithm, SemiBoost. The inputs to SemiBoost are: labeled data, unlabeled data and the similarity matrix.

supervised learning problems.
To address the semi-supervised improvement, we propose a

boosting framework, termedSemiBoost, for improving a given
supervised learning algorithm with unlabeled data. Similar
to most boosting algorithms [14], SemiBoost improves the
classification accuracy iteratively. At each iteration, a number
of unlabeled examples will be selected and used to train a new
classification model using the given supervised learning algo-
rithm. The trained classification models from each iteration
are combined linearly to form a final classification model. An
overview of the SemiBoost is presented in Figure 1. The key
difficulties in designing SemiBoost are: (1) how to sample the
unlabeled examples for training a new classification model at
each iteration, and (2) what class labels should be assigned
to the selected unlabeled examples. It is important to note
that unlike supervised boosting algorithms where we select
labeled examples that are difficult to classify, SemiBoost needs
to select unlabeled examples, at each iteration.

One way to address the above questions is to exploit both the
clustering assumption and the large margin criterion. One can
improve the classification margin by selecting the unlabeled
examples with the highest classification confidence, and assign
them the class labels that are predicted by the current classifier.
The assigned labels are hereafter referred to as thepseudo-
labels. The labeled data, along with the selected pseudo-
labeled data are utilized in the next iteration for traininga
second classifier. This is broadly the strategy adopted by ap-
proaches like Self-training [15], ASSEMBLE [16] and Semi-
supervised MarginBoost [17]. However, a problem with this
strategy is that the introduction of examples with predicted
class labels may only help to increase the classification mar-
gin, without actually providing any novel information to the
classifier. Since the selected unlabeled examples are the ones
that can be classified confidently, they often are far away from
the decision boundary. As a result, the classifier trained by
the selected unlabeled examples is likely to share the same
decision boundary with the original classifier that was trained
only by the labeled examples. This is because by adjusting
the decision boundary, the examples with high classification
confidence will gain even higher confidence. This implies
that we may need additional guidance for improving the base
classifier, along with the maximum margin criterion.

To overcome the above problem, we propose to use the
pairwise similarity measurements to guide the selection of

unlabeled examples at each iteration, as well as for assigning
class labels to them. For each unlabeled examplexi, we
compute the confidence of assigning the examplexi to the
positive class as well as the confidence of assigning it to the
negative class. These two confidences are computed based on
the prediction made by the boosted classifier and the similarity
among different examples. We then select the examples with
the highest classification confidence together with the labeled
examples to train a new classification model at each iteration.
The new classification model will be combined linearly with
the existing classification models to make improved predic-
tions. Note that the proposed approach is closely related to
graph-based semi-supervised learning approaches that exploit
the manifold assumption. The following section discusses the
existing semi-supervised learning methods, and their relation-
ship with SemiBoost.

II. RELATED WORK

Table I presents a brief summary of the existing semi-
supervised learning methods and the underlying assumptions.
The first column shows the assumptions on the data used
in the algorithm. The second column gives the name of the
approach with its reference, followed by a brief description of
the method in column 3. Column 4 specifies if the algorithm
is naturally inductive (I) or transductive (T). An inductive
algorithm can be used to predict the labels of samples that
are unseen during training (irrespective of it being labeled
or unlabeled), on the other hand, transductive algorithms are
limited to predicting only the labels of the unlabeled samples
seen during training.

Graph-based approaches represent both the labeled and the
unlabeled examples by a connected graph, in which each
example is represented by a vertex, and pairs of vertices
are connected by an edge if the corresponding examples
have large similarity. The well known approaches in this
category include Harmonic Function based approach [18],
Spectral Graph Transducer (SGT) [7], Gaussian process based
approach [23], Manifold Regularization [12] and Label Prop-
agation approach [3], [4]. The optimal class labels for the un-
labeled examples are found by minimizing their inconsistency
with both the supervised class labels and the graph structure.

A popular way to define the inconsistency between the
labelsy = {yi}

n
i=1 of the samples{xi}

n
i=1, and the pairwise
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TABLE I
A SUMMARY OF SEMI-SUPERVISED CLASSIFICATION ALGORITHMS. T AND I IN THE LAST COLUMN DENOTE TRANSDUCTIVE AND INDUCTIVE PROPERTY

OF THE ALGORITHM, RESPECTIVELY.

Group Approach Summary T/I

Manifold Assumption

Label Propagation [3], [4] Graph-based; Maximize label consistency using Graph Laplacian T

Min-cuts [6] Edge-weight based graph-partitioning algorithm constraining nodes
with same label to be in same partition

T

MRFs [5], GRFs [18] Markov random field and Gaussian random field models T

LDS [19] TSVM trained on a dimensionality reduced data using graph-based
kernel

T

SGT [7] Classification cost minimized with a Laplacian regularizer T

LapSVM [12] SVM with Laplacian regularization I

Cluster Assumption

Co-training [20] Maximizes predictor consistency among two distinct feature views I

Self-training [15] Assumes pseudo-labels as true labels and retrains the model I

SSMB [17] Maximizes pseudo-margin using boosting I

ASSEMBLE [16] Maximizes pseudo-margin using boosting I

Mixture of Experts [21] EM based model-fitting of mixture models I

EM-Naive Bayes [22] EM based model-fitting of Naive Bayes I

TSVM [10], S3VM [11] Margin maximization using density of unlabeled data I

Gaussian processes [23] Bayesian discriminative model I

Manifold & Cluster As-
sumptions

SemiBoost (Proposed) Boosting with a graph Laplacian inspired regularization I

similaritiesSi,j is the quadratic criterion,

F (y) =

n
∑

i=1

n
∑

j=1

Si,j(yi − yj)
2 = y

T Ly

whereL is the combinatorial graph Laplacian. Given a semi-
supervised setting, only a few labels in the above consistency
measure are assumed to be known, and the rest are considered
unknown. The task is to assign values to the unknown labels
in such a way that the overall inconsistency is minimized.
The approach presented in [6] considers the case when
yi ∈ {±1}, thereby formulating it as a discrete optimization
problem and solve it using a min-cut approach. Min-cuts
are however prone to degenerate solutions, and hence the
objective was minimized using a mixed integer programming
approach in [24], which is computationally prohibitive [11].
A continuous relaxation of this objective function, where
yi ∈ [0, 1] has been considered in several approaches, which
is solved using Markov random fields [5], Gaussian random
fields and harmonic functions [18].

The proposed framework is closely related to the graph-
based approaches in the sense that it utilizes the pairwise
similarities for semi-supervised learning. The inconsistency
measure used in the proposed approach follows a similar
definition, except that an exponential cost function is used
instead of a quadratic cost for violating the labels. Unlikemost
graph-based approaches, we create a specific classification
model by learning from both the labeled and the unlabeled
examples. This is particularly important for semi-supervised
improvement, whose goal is to improve a given supervised
learning algorithm with massive amounts of unlabeled data.

The approaches built on cluster assumption utilize the un-
labeled data to regularize the decision boundary. In particular,

the decision boundary that passes through the region with
low density of unlabeled examples is preferred to the one
that is densely surrounded with unlabeled examples. These
methods specifically extend SVM or related maximum margin
classifiers, and are not easily extensible to non-margin based
classifiers like decision trees. Approaches in this category
include transductive support vector machine (TSVM) [10],
Semi-supervised Support Vector Machine (S3VM) [11], and
Gaussian processes with null category noise model [23]. The
proposed algorithm, on the other hand, is a general approach
which allows the choice of a base classifier well-suited to the
specific task.

Finally, we note that the proposed approach is closely re-
lated to the family of ensemble approaches for semi-supervised
learning. Ensemble methods have gained significant popularity
under the realm of supervised classification, with the availabil-
ity of algorithms such as AdaBoost [25]. The semi-supervised
counter parts of ensemble algorithms rely on the cluster
assumption, and prime examples include ASSEMBLE [16]
and Semi-supervised MarginBoost (SSMB) [17]. Both these
algorithms work by assigning a pseudo-label to the unlabeled
samples, and then sampling them for training a new supervised
classifier. SSMB and ASSEMBLE are margin-based boosting
algorithms which minimize a cost function of the form

J(H) = C(yiH(xi)) + C(|H(xi)|),

whereH is the ensemble classifier under construction, andC
is a monotonically decreasing cost function. The termyiH(xi)
corresponds to the margin definition for labeled samples. A
margin definition involves the true labelyi, which is not avail-
able for the unlabeled samples. A pseudo-margin definition is
used such as|H(xi)| in ASSEMBLE, or H(xi)

2 in SSMB,
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• Start with an empty ensemble.
• At each iteration,

– Compute the peusdolabel (and its confidence)
for each unlabeled example (using existing en-
semble, and the pairwise similarity).

– Sample most confident pseudolabeled examples;
combine them with the labeled samples and
train a component classifier using the supervised
learning algorithmA.

– Update the ensemble by including the compo-
nent classifier with an appropriate weight.

Fig. 2. An outline of the SemiBoost algorithm for semi-supervised improve-
ment.

thereby getting rid of theyi term in the objective function
using the fact thatyi ∈ {±1}. However, the algorithm relies
on the prediction of pseudo-labels using the existing ensemble
classifier at each iteration. In contrast, the proposed algorithm
combines the similarity information along with the classifier
predictions to obtain more reliable pseudo-labels, which is
notably different from the existing approaches. SSMB on the
other hand requires the base learner to be a semi-supervised
algorithm in itself [17], [16]. Therefore, it is solving a different
problem of boosting semi-supervised algorithms, in contrast
with the proposed algorithm.

In essence, the SemiBoost algorithm combines the advan-
tages of graph based and ensemble methods, resulting in
a more general and powerful approach for semi-supervised
learning.

III. SEMI-SUPERVISED BOOSTING

We first describe the semi-supervised improvement problem
formally, and then present the SemiBoost algorithm.

A. Semi-supervised improvement

Let D = {x1,x2, . . . ,xn} denote the entire dataset, in-
cluding both the labeled and the unlabeled examples. Sup-
pose that the firstnl examples are labeled, given byyl =
(yl

1, y
l
2, . . . , y

l
nl

), where each class labelyl
i is either +1 or

−1. We denote byyu = (yu
1 , yu

2 , . . . , yu
nu

), the imputed class
labels of unlabeled examples, wherenu = n − nl. Let the
labels for the entire dataset be denoted asy = [yl;yu].
Let S = [Si,j ]n×n denote the symmetric similarity matrix,
where Si,j ≥ 0 represents the similarity betweenxi and
xj . Let A denote the given supervised learning algorithm.
The goal of semi-supervised improvement is to improve the
performance ofA iteratively by treatingA like a black box,
using the unlabeled examples and the pairwise similarityS. A
brief outline of the SemiBoost algorithm for semi-supervised
improvement is presented in Figure 2.

It is important to distinguish the problem of semi-supervised
improvement from the existing semi-supervised classification
approaches. As discussed in section 2, any ensemble based
algorithm must rely on the pseudo-labels for building the
next classifier in the ensemble. On the other hand, graph
based algorithms use the pairwise similarities between the

samples, and assign the labels to unlabeled samples such that
they are consistent with the similarity. In the semi-supervised
improvement problem, we aim to build an ensemble classifier
which utilizes the unlabeled samples in the way a graph based
approach would utilize.

B. SemiBoost

To improve the given learning algorithmA, we follow the
idea of boosting by running the algorithmA iteratively. A
new classification model will be learned at each iteration
using the algorithmA, and the learned classification models
at different iterations will be linearly combined to form the
final classification model.

1) Objective function: The unlabeled samples must be
assigned labels following two main criteria: (a) the pointswith
high similarity among unlabeled samples must share the same
label, (b) those unlabeled samples which are highly similar
to a labeled sample must share its label. Our objective func-
tion F (y, S) is a combination of two terms, one measuring
the inconsistency between labeled and unlabeled examples
Fl(y, S), and the other measuring the inconsistency among
the unlabeled examplesFu(yu, S).

Inspired by the harmonic function approach, we define
Fu(y, S), the inconsistency between class labelsy and the
similarity measurementS, as

Fu(yu, S) =

nu
∑

i,j=1

Si,j exp(yu
i − yu

j ). (1)

Many objective functions using similarity or kernel matrices,
require the kernel to be positive semi-definite to maintain the
convexity of the objective function (e.g., SVM). However,
since exp(x) is a convex function1, and we assume that
Si,j is non-negative∀i, j, the functionFu(yu, S) is convex
irrespective of the positive definiteness of the similaritymatrix.
This allows similarity matrices which are asymmetric (e.g.,
similarity computed using KL-divergence) without changing
the convexity of the objective function. Asymmetric similarity
matrices arise when using directed graphs for modeling clas-
sification problems, and are shown to perform better in certain
applications related to text categorization [26].

Though our approach can work for general similarity
matrices, we assume that the similarity matrix provided is
symmetric. Note that Eq (1) can be expanded asFu(yu, S) =
1
2

∑

Sj,i exp(yu
j − yu

i ) + 1
2

∑

Si,j exp(yu
i − yu

j ), and due to
the symmetry ofS, we have

Fu(yu, S) =

nu
∑

i,j=1

Si,j cosh(yu
i − yu

j ), (2)

where cosh(yi − yj) = (exp(−yi + yj) + exp(yi − yj))/2
is the hyperbolic cosine function. Note thatcosh(x) is a
convex function with its minimum atx = 0. Rewriting
Eq (1) using thecosh(.) function reveals the connection

1Our choice ofF (y, S) is a mixture of exponential loss functions, and is
motivated by the traditional exponential loss used in Boosting and the resulting
large margin classifier. However, Any convex (monotonic) lossfunction should
work with the current framework.
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between the quadratic penalty used in the graph Laplacian
based approaches, and the exponential penalty used in the
current approach. Using acosh(.) penalty not only facilitates
the derivation of boosting based algorithms but also increases
the classification margin. The utility of an exponential cost for
boosting algorithms is well known [27].

The inconsistency between labeled and unlabeled examples
Fl(y, S) is defined as

Fl(y, S) =

nl
∑

i=1

nu
∑

j=1

Si,j exp(−2yl
iy

u
j ). (3)

Combining Eqs (1) and (3) leads to the objective function,

F (y, S) = Fl(y, S) + CFu(yu, S). (4)

The constantC is introduced to weight the importance be-
tween the labeled and the unlabeled data. Given the objective
function in (4), the optimal class labelyu is found by
minimizing F .

Let ŷl
i, i = 1, · · · , nl denote the labels predicted by the

learning algorithm over the labeled examples in the training
data. Note that in Eq (4), there is no term corresponding to the
inconsistency between predicted labels of the labeled samples
and their true labels, which would beFll =

∑nl

i=1 exp(yl
i, ŷ

l
i).

Adding this term would make the algorithm specialize to
AdaBoost when no unlabeled samples are present. Since in
practice, there is a limited amount of labeled data available,
the Fll term is usually significantly smaller thanFl and Fu,
and therefore is omitted in the formulation in Eq (4).

selecting an even smaller subset of samples to train the
classifier may not be effective. The current approach therefore,
includes the prediction on the labeled data in the form of
constraints, thereby utilizing all the available labeled data at
each iteration of training a classifier for the ensemble. The
problem can now be formally expressed as,

min F (y, S)

s.t. ŷl
i = yl

i, i = 1, · · · , nl. (5)

This is a convex optimization problem, and therefore can
be solved effectively by numerical methods. However, since
our goal is to improve the given learning algorithmA by
the unlabeled data and the similarity matrixS, we present a
boosting algorithm that can efficiently minimize the objective
function F . The following procedure is adopted to derive the
boosting algorithm.

• The labels for the unlabeled samplesyu
i are replaced

by the ensemble predictions over the corresponding data
sample.

• A bound optimization based approach is then used to find
the ensemble classifier minimizing the objective function.

• The bounds are simplified further to obtain the sampling
scheme, and other required parameters.

The above objective function is strongly related to several
graph based approaches, manifold regularization and ensemble
methods. A discussion on the relationship between SemiBoost
and several commonly used semi-supervised algorithms is
presented in the Appendices F and G of the longer version
of this paper [28].

C. Algorithm

We derive the boosting algorithm using the bound opti-
mization approach. An alternate, conventional way to derive
the boosting algorithm using the Function Gradient method
is presented in [29]. This method may also be viewed as a
relaxation that approximates the original objective function
by a linear function. Such an approach however, involves
specification of a parametric step size. In our derivation, the
step size is automatically determined thus overcoming the
difficulty in determining the step-size. SemiBoost algorithm
is briefly summarized in Figure 3.

Let h(t)(x) : X → {−1,+1} denote the 2-class classifica-
tion model that is learned at thet-th iteration by the algorithm
A. Let H(x) : X → R denote the combined classification
model learned after the firstT iterations. It is computed as a
linear combination of the firstT classification models, i.e.,

H(x) =

T
∑

t=1

αth
(t)(x),

whereαt is the combination weight. At the(T +1)-st iteration,
our goal is to find a new classifierh(x) and the combination
weight α that can efficiently minimize the objective function
F .

This leads to the following optimization problem:

arg min
h(x),α

nl
∑

i=1

nu
∑

j=1

Si,j exp(−2yl
i(Hj + αhj))

+ C

nu
∑

i,j=1

Si,j exp(Hi −Hj) exp(α(hi − hj))(6)

s.t. h(xi) = yl
i, i = 1, · · · , nl, (7)

whereHi ≡ H(xi) andhi ≡ h(xi).
This expression involves products of variablesα and hi,

making it non-linear and hence difficult to optimize. The
constraints, however, can be easily satisfied by including all
the labeled samples in the training set of each component
classifier. To simplify the computation, we construct the upper
bound of the objective function, described in Proposition 1.

Proposition 1: Minimizing Eq (7) is equivalent to minimiz-
ing the function

F 1 =

nu
∑

i=1

exp(−2αhi)pi + exp(2αhi)qi (8)

where

pi =

nl
∑

j=1

Si,je
−2Hiδ(yj , 1) +

C

2

nu
∑

j=1

Si,je
Hj−Hi (9)

qi =

nl
∑

j=1

Si,je
2Hiδ(yj ,−1) +

C

2

nu
∑

j=1

Si,je
Hi−Hj (10)

andδ(x, y) = 1 whenx = y and0 otherwise.
Proof Sketch: By substitutingHi ← Hi + αhi into F (y, S)
and regrouping the terms, we obtain the desired result.�
The quantitiespi and qi can be interpreted as the confidence
in classifying the unlabeled examplexi into the positive class
and the negative class, respectively.



6

• Compute the pairwise similaritySi,j between any
two examples.

• Initialize H(x) = 0
• For t = 1, 2, . . . , T

– Compute pi and qi for every example using
Equations (9) and (10)

– Compute the class labelzi = sign(pi − qi) for
each example

– Sample examplexi by the weight|pi − qi|
– Apply the algorithmA to train a binary classi-

fier ht(x) using the sampled examples and their
class labelszi

– Computeαt using Equation (11)
– Update the classification function asH(x) ←

H(x) + αtht(x)

Fig. 3. The SemiBoost algorithm

The expression in Eq (8) is difficult to optimize since the
weight α and the classifierh(x) are coupled together. We
simplify the problem using the upper bound stated in the
following proposition.

Proposition 2: Minimizing Eq (8) is equivalent to minimiz-
ing

F 1 ≤

nu
∑

i=1

(pi + qi)(e
2α + e−2α − 1)−

nu
∑

i=1

2αhi(pi − qi).

Proof: See [28]. �

We denote the upper bound in the above equation byF 2.
Proposition 3: To minimizeF 2, the optimal class labelzi

for the examplexi is zi = sign(pi − qi), and the weight for
sampling examplexi is |pi−qi|. The optimalα that minimizes
F 1 is

α =
1

4
ln

∑nu

i=1 piδ(hi, 1) +
∑nu

i=1 qiδ(hi,−1)
∑nu

i=1 piδ(hi,−1) +
∑nu

i=1 qiδ(hi, 1)
. (11)

Proof Sketch: Expression in Eq 11 can be obtained by dif-
ferentiatingF̄2 w.r.t α and setting it equal to 0. Observe that
the above function is linear inhi(pi − qi) and is minimized
when we choosehi = sign(pi − qi), for maximum values of
|pi − qi|. �

Propositions 1-3 justify the relaxations made in the deriva-
tion of the SemiBoost. At each relaxation, the “touch-point”
is maintained between the objective function and the upper
bound. As a result, the procedure guarantees: (a) the ob-
jective function always decreases through iterations and (b)
the final solution converges to a local minimum. For more
details, see [30]. Proposition 3 establishes the key ingredients
required for a boosting algorithm. Using these, the SemiBoost
algorithm is presented in Figure 3.

Let ǫt be the weighted error made by the classifier, where

ǫt =

∑nu

i=1 piδ(hi,−1) +
∑nu

i=1 qiδ(hi, 1)
∑

i(pi + qi)
.

As in the case of AdaBoost [29],α can be expressed as

αt =
1

4
ln

(

1− ǫt

ǫt

)

(12)

which is very similar to the weighting factor of AdaBoost,
differing only by a constant factor of12 . Also, if AdaBoost
encounters a situation where the base classifier has an error
rate more than random, i.e.ǫt+1 ≥

1
2 , it returns the current

classifierHt. This situation has a direct correspondence with
the condition in SemiBoost where the algorithm stops when
α ≤ 0. From Eq (11) (or rather directly from Eq (12)), we
can see that this happens only when the denominator exceeds
the numerator, which meansǫt+1 ≥

1
2 is equivalent to the

condition α ≤ 0. However, since this condition may not be
satisfied until a large number of classifiers are trained, usually
there is a parameter specifying the number of classifiers to
be used. It has been empirically determined that using a fixed
number (usually 20) of classifiers for AdaBoost gives good
performance [27].

The sampling scheme used in SemiBoost is significantly
different from that of AdaBoost. AdaBoost knows the true
labels of the data, and hence can proceed to increase/decrease
the weights assigned to samples based on the previous itera-
tion. In SemiBoost we do not have the true class labels for
the unlabeled data, which makes it challenging to estimate the
difficulty of classification. However, Proposition 2 gives us the
result that selecting the most confident unlabeled data samples
is optimal for reducing the objective function. Intuitively,
using the samples with highly confident labeling is a good
choice because they are consistent with the pairwise similarity
information along with their classifications. The values ofpi

andqi tend to be large if (i)xi can’t be classified confidently,
i.e., |Hi| is small, and one of its close neighbors is labeled.
This corresponds to the first term in Eq. (9) and Eq. (10).
(ii) the example xi is highly similar to some unlabeled
examples that are already confidently classified, i.e., large si,j

and |Hj | for unlabeled examplexj . This corresponds to the
second term in Eq. (9) and Eq. (10). This indicates that the
similarity information plays an important role in guiding the
sample selection, in contrast with the previous approacheslike
ASSEMBLE and SSMB, where the samples are selected to
increase value of|Hi| alone.

Similar to most boosting algorithms, we can show that
the proposed semi-supervised boosting algorithm reduces the
original objective functionF exponentially. This result is
summarized in the following Theorem.

Theorem 1:Let α1, ..., αt be the combination weights that
are computed by running the SemiBoost algorithm (Fig 1).
Then, the objective function at(t + 1)st iteration, i.e.,Ft+1,
is bounded as follows:

Ft+1 ≤ κS exp

(

−

t
∑

i=1

γi

)

,

whereκS =
[

∑nu

i=1

(

∑nl

j=1 Si,j + C
∑nu

j=1 Si,j

)]

and γi =

log(cosh(αi)).
Proof: See [28]. �

The above theorem shows that the objective function follows
an exponential decay, despite the relaxations made in the above
propositions.

Corollary 1: The objective function at(t + 1)st itera-
tion is bounded in terms of the errorǫt as Ft+1 ≤
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κS

∏t
i=1

(

1−ǫt

ǫt

)1/4

.

Proof Sketch: Can be verified by substituting Eq. (12) forαi

in Theorem 1. �

In the above derivation, we constrained the objective func-
tion such that the prediction of the classifier on the labeled
samples must match the true labels provided. However, if the
true labels are noisy, the resulting semi-supervised classifier
might not perform its best. An algorithm similar to SemiBoost
may be derived in such a case by including a term penalizing
the solution, if the predicted labels of the labeled samplesare
different from the true labels. In this paper, we assume that
the given labels are correct. This is reasonable given the fact
that there are very few labeled samples, one can ensure their
correctness without much difficulty.

D. Implementation

1) Sampling: Sampling forms the most important step
for SemiBoost, just like any other boosting algorithm. The
criterion for sampling usually considers the following issues:
(a) How many samples must be selected from the unlabeled
samples available for training? and (b) What is the distribution
according to which the sampling must be done?

Supervised boosting algorithms like AdaBoost have the true
labels available, which makes it easy to determine which
samples to choose or not to choose. On the other hand, the
labels assigned during the SemiBoost iteration are pseudo
labels, and may be prone to errors. This suggests that we
should choose only the top few most confident data points
for SemiBoost. But selecting a small number of samples
might make the convergence slow, and selecting too large a
sample might include non-informative or even poor samples
into the training set. The choice currently is made empirically;
selecting top 10% of the samples seem to work well in
practice. From Proposition 3, to reducēF1, it is preferable
to select the samples with a large value of|pi − qi|. This
selection provides highly reliable pseudo-labeled samples to
the classifier. The sampling is probabilistically done according
to the distribution,

Ps(xi) =
|pi − qi|

∑nl

i=1 |pi − qi|
,

where Ps(xi) is the probability that the data pointxi is
sampled from the transduction set.

2) Stopping Criterion:According to the optimization pro-
cedure, SemiBoost stops whenα ≤ 0, indicating that addition
of that classifier would increase the objective function instead
of decreasing it. However, the value ofα decreases very fast
in the beginning, and eventually the rate of decrease falls
down, taking a large number of iterations to actually make it
negative. We currently use an empirically chosen fixed number
of classifiers in the ensemble, specified as a parameterT . We
set the value ofT = 20.

3) Similarity Matrix: We use the Radial Basis Function
similarity inspired from its success in graph based approaches.
For any two samplesxi andxj , the similaritySi,j is computed
as,Si,j = exp(‖xi−xj‖

2
2/σ2), whereσ is the scale parameter

controlling the spread of the radial basis function. It is well

known that the choice ofσ has a large impact on the
performance of the algorithm [18]. We set the scale parameter
to the similarity values at the10-th percentile to the 100-
th percentile, varied in steps of 10, whereµs is the average
value of the similarity matrixS. Experimentation revealed that
the transductive and inductive performances are stable forthe
chosen range ofσ. This is a desirable property given the fact
that choosing the right scale parameter is a difficult problem.

IV. RESULTS AND DISCUSSION

The focus of SemiBoost is to improve any given (super-
vised) classifier using the unlabeled data. Therefore, our pri-
mary aim is to evaluate SemiBoost based on the improvement
achieved in the inductive performance of base classifiers.

An illustration of improvement in the performance of a
supervised learner (Decision Stump) using SemiBoost on the
“ring-norm” dataset is shown in Figure 4. The dataset has 2
classes, with 500 samples each. There are 10 labeled samples
per class, indicated using (�, N). The solid line shows the
decision boundary and the dark and light regions indicate
the two class regions. The performance of SemiBoost at each
iteration is given in parentheses below each of the plots shown.
Figures 4(a)-(c) show the classifier obtained by SemiBoost
at the first three iterations, and Figure 4(d) shows the final
classifier obtained at the 12 iteration.

A. Datasets

SemiBoost was evaluated on 16 different datasets: 4 bench-
mark datasets provided in [9], 10 UCI datasets and 2 datasets
from ethnicity classification from face images [31] and texture
classification [32]. Since SemiBoost is applicable for two-class
problems, we chose the two-class datasets from these bench-
mark datasets. The multiclass datasets in UCI are converted
into two-class datasets by choosing the two most populated
classes. The name of the dataset used, the classes chosen,
the number of samples present in the selected classesn, and
the dimensionality of the datasetd are summarized in the
first column in Table II. In addition to this, we evaluated
the proposed approach on text categorization problems, whose
results are presented in the next section.

The transductive performance of semi-supervised learning
algorithms is well-studied [9, Chapter 21]. However, semi-
supervised learning is not limited to transductive learning, and
out-of-sample extensions have attracted significant attention.
In fact, inductive learning is important given that only a
portion of the unlabeled samples are seen during the training
phase. The real utility of learning in such cases lies in the
ability to classify unseen test samples. With this motivation,
we compare the performance of SemiBoost with three state-
of-the-art inductive semi-supervised algorithms: Transductive
SVM [7], an inductive version of Low Density Separation
(LDS) [8] and Laplacian-SVM from the Manifold Regular-
ization approach [12]. LDS is not an inductive algorithm as
it involves a graph-based dimensionality reduction step. We
use the labels predicted by the LDS on the transduction set to
train an inductive classifier on the original data.
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(a) Iter. 1, (65.0%) (b) Iter. 2, (76.5%) (c) Iter. 3, (86.4%) (d) Iter. 12, (94.6%)

Fig. 4. Decision boundary obtained by SemiBoost at iterations 1, 2, 3 and 12, on the two concentric rings dataset, using Decision Stump as the base classifier.
There are 10 labeled samples per class (�,N). The transductive performance (i.e., performance on the unlabeled data used for training) of SemiBoost is given
at each iteration in parentheses.

B. Experimental setup

The experimental setup aims to study the improvement in
performance obtained on a supervised learner, by using unla-
beled data and the performance of the SemiBoost algorithm
with three state of the art semi-supervised learning algorithms.

We use classification accuracy as the evaluation measure.
The mean and standard deviation of % accuracy are reported
over 20 runs of each experiment, with different subsets of
training and testing data. To measure the inductive perfor-
mance, we randomly split the dataset into two halves. We call
them the training and test sets. The training set has 10 labeled
points and the rest unlabeled. The ensemble classifier learnt by
SemiBoost on the training set is evaluated by its performance
on predicting the labels of the test set.

SemiBoost samples the unlabeled data, labels them at each
iteration of boosting and builds a classifierht(x). The number
of such classifiers built will depend on the number of iterations
T in boosting.T was set to 10 and we stop the boosting when
weightsαt computed from Eq (11) become negative. We set
the value ofC in the objective function Eq (4) to be the ratio of
number of labeled samples to the number of unlabeled samples
C = nl/nu.

The first experiment studies the improvement in the perfor-
mance of three different base classifiers (ht(x)) after apply-
ing SemiBoost: Decision Stump (DS), the J48 decision tree
algorithm (J48), and the Support Vector Machine with the
sequential minimal optimization (SVM) algorithm. Software
WEKA [33] was used to implement all the three classifiers.
All the algorithms are run with their default parameters (e.g.
default C and a linear kernel was used for SVM algorithm).
We chose decision trees (DS and J48) and SVM as the base
classifiers because they are shown to be successful in the
supervised learning literature, for varied learning tasks.

C. Results

1) Choice of base classifier:Table II compares the super-
vised and the three benchmark semi-supervised algorithms to
the SemiBoost algorithm. The columns DS, J48 and SVM
give the performances of the base classifiers on the induction
set. The columns SB-X give the inductive performances of
SemiBoost with base classifier X. The last three columns in
Table II correspond to the inductive performances of bench-
mark semi-supervised algorithms TSVM, LDS and LapSVM.
Note that the idea is not to build the best classifier for

individual classification problem, but to show the possible
improvement in the performance of supervised classifiers using
SemiBoost on all the classification problems. Results indicate
that SemiBoost significantly improves the performance of all
the three base classifiers for nearly all the datasets. Usingan
independent sample paired t-test, we observed that SemiBoost
significantly improved the performance of Decision Stump on
12 out of 16 datasets. The performance of J48 is improved
significantly on 13 out of 16 datasets, and there is a sig-
nificant degradation on the house dataset. For SVM, there
is a significant improvement in 7 out of 16 datasets, while
a significant degradation in 3 cases. The cases where SVM
degraded, the benchmark algorithms performed poor compared
to the supervised classifiers, suggesting that unlabeled data is
not helpful in these cases. The ensemble classifier obtained
using SemiBoost is relatively more stable, as its classification
accuracy has lower standard deviation when compared to the
base classifier.

2) Performance comparison of SemiBoost with Benchmark
Algorithms: Performance of SemiBoost is compared with
three different algorithms, namely TSVM, LapSVM and ILDS
(inductive version of the LDS algorithm). SemiBoost achieves
performance comparable to that of the benchmark algorithms.
SemiBoost performs better than ILDS on almost all the
datasets, and significantly better on 4 of the datasets, 2 using
Decision Stump and 2 using SVM as the base classifier.
SemiBoost significantly outperforms TSVM on 10 out of
16 datasets using SVM, and 8 out of 16 datasets using
Decision Stump. Also, TSVM had difficulty converging on
three datasets in a reasonable amount of time (20 hours). Semi-
Boost performs comparably to LapSVM; SB-DS outperformed
LapSVM significantly on 2 datasets, and performed worse than
LapSVM on 1. Similarly, SB-SVM and LapSVM significantly
outperform each other on 3 out of the 8 cases.

There are datasets where one of the base classifiers outper-
forms SemiBoost. But in these cases, one of the base classifiers
outperforms all the semi-supervised algorithms (e.g., SVM
outperforms all the algorithms on COIL2, vehicle, sat and
house datasets). This indicates that the unlabeled data do
not always improve the base classifier, or in general, are
not guaranteed to help in the learning process. When a base
classifier outperforms the semi-supervised learning algorithms,
we observed that the SemiBoost tends to perform close to the
baseline compared to the others in most cases.
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TABLE II
INDUCTIVE PERFORMANCE OFSEMIBOOST AND THE THREE BENCHMARK ALGORITHMS. THE FIRST COLUMN SHOWS THE DATASET AND THE TWO

CLASSES CHOSEN. THE NUMBER OF SAMPLESn AND THE DIMENSIONALITY d ARE SHOWN BELOW THE NAME OF EACH DATASET. THE ALGORITHMS

CHOSEN AS BASE CLASSIFIERS FOR BOOSTING AREDECISION STUMP (DS), DECISION TREE (J48)AND SUPPORTVECTORMACHINE (SVM). FOR

EACH ALGORITHM, THE SB- PREFIXED COLUMN INDICATES USING THESEMIBOOST ALGORITHM ON THE BASE CLASSIFIER. THE COLUMNS TSVM,
ILDS AND LAPSVM SHOW THE INDUCTIVE PERFORMANCE OF THE THREE BENCHMARK ALGORITHMS. A ‘-’ INDICATES THAT WE COULD NOT FINISH

RUNNING THE ALGORITHM IN A REASONABLE TIME (20 HOURS) DUE TO CONVERGENCE ISSUES. EACH ENTRY SHOWS THE MEAN CLASSIFICATION

ACCURACY AND STANDARD DEVIATION (IN PARENTHESES) OVER 20 TRIALS.

Dataset (classes) DS SB-DS J48 SB-J48 SVM SB-SVM TSVM ILDS LapSVM
(n, d)

Digit1 (1,2) 57.15 78.09 57.21 74.97 74.81 77.89 79.52 79.53 74.06
(1500, 241) (7.0) (3.6) (7.1) (4.3) (6.2) (4.6) (5.0) (7.0) (4.1)
COIL2 (1,2) 55.14 55.84 54.81 55.27 59.75 55.42 50.23 54.62 55.64
(1500, 241) (3.1) (4.0) (3.4) (2.9) (3.3) (4.3) (4.9) (4.0) (5.6)
BCI(1,2) 51.27 49.38 51.42 50.67 52.45 52.02 50.50 50.73 54.37
(400, 117) (4.2) (2.9) (4.1) (3.8) (3.1) (4.1) (3.6) (2.4) (3.6)
g241n (1,2) 50.73 54.54 50.57 54.71 57.55 57.93 51.14 50.25 53.65
(1500, 241) (3.1) (2.8) (2.9) (2.5) (2.6) (3.4) (3.5) (1.5) (3.1)
austra (1,2) 60.39 73.46 60.12 73.36 65.64 71.36 73.38 66.00 74.38
(690, 15) (13.0) (7.9) (12.7) (7.4) (8.2) (8.8) (12.6) (14.5) (8.7)
ethn (1,2) 65.72 66.42 64.98 63.98 67.04 67.57 - 67.16 74.60
(2630, 30) (8.6) (6.4) (7.9) (5.3) (4.8) (5.7) (16.7) (5.8)
heart (1,2) 68.26 79.48 67.67 78.78 70.59 79.00 77.63 77.11 77.96
(270, 9) (14.3) (3.6) (15.0) (3.8) (7.9) (4.1) (6.6) (9.6) (4.8)
wdbc (1,2) 79.47 88.98 75.95 89.82 75.74 88.82 86.40 85.07 91.07
(569, 14) (16.3) (6.5) (17.1) (4.0) (9.7) (9.9) (8.6) (8.7) (3.4)
vehicle (2,3) 60.48 69.31 60.89 70.25 78.28 72.29 63.62 66.28 71.38
(435, 26) (7.6) (6.7) (8.1) (7.7) (6.2) (9.4) (8.6) (8.5) (6.7)
texture (2,3) 95.67 98.90 89.46 98.50 98.44 99.91 - 98.38 99.11
(2026, 19) (5.6) (0.6) (6.7) (0.9) (1.4) (0.1) (7.2) (0.92)
uci image (1,2) 89.64 100.00 87.03 99.79 99.92 100.00 91.91 100 99.95
(660, 18) (11.2) (0.0) (9.3) (0.3) (0.2) (0.0) (8.2) (0.0) (0.2)
isolet (1,2) 64.23 91.92 64.48 90.20 89.58 95.12 90.38 92.07 93.93
(600, 51) (12.7) (2.1) (12.8) (3.4) (5.3) (2.3) (8.0) (11.4) (3.4)
mfeat fou (1,2) 82.25 96.25 85.90 96.00 98.78 99.85 95.32 96.5 100.00
(400, 76) (2.6) (2.0) (12.9) (1.8) (1.1) (0.3) (7.5) 10.8 (0.0)
optdigits (2,4) 65.91 93.22 65.59 93.33 90.31 96.35 92.34 96.40 98.34
(1143, 42) (13.4) (3.0) (13.1) (2.6) (3.6) (2.4) (9.0) (11.1) (2.4)
sat (1,6) 82.77 85.99 83.80 86.55 99.13 87.71 - 94.20 99.12
(3041, 36) (5.5) (3.7) (6.1) (3.0) (0.7) (2.9) (14.2) (0.5)
house (1,2) 94.83 91.92 94.83 91.34 91.16 90.65 86.55 89.35 89.95
(232, 16) (6.0) (3.9) (6.0) (3.3) (3.8) (2.8) (4.4) (2.2) (4.4)

3) Performance with unlabeled data increment:Fig. 5
shows the performance of SemiBoost on three of the UCI
datasets (Figs. 5 (a)-(c)) we used. Each dataset is split into
two equal parts, one for training and one for inductive testing.
Ten samples in the training set are always labeled, and the
performance obtained on the inductive test set by training
an SVM with default parameters is shown with a dotted
line in the plot. The rest of the (unlabeled) samples in the
training set are added to the training set in units of 10%.
The dashed line shows the performance obtained by the SVM
classifier when all these added samples are labeled using their
ground truth. The solid line shows the performance of the
SemiBoost algorithm, treating the added samples as unlabeled.

It is observed that the performance of SemiBoost improves
with the addition of more and more unlabeled data, whenever
such an improvement is possible.

4) Sensitivity to parameterσ: Fig. 6 shows the performance
of the SemiBoost-SVM, with varying value of the parameterσ.
Sigma was chosen to be theρ-th percentile of the distribution
of similarities, withρ varying between 10-th percentile to 100-
th percentile. Selecting the value ofσ is one of the most
difficult aspects of graph construction, and several heuristics
have been proposed to determine its value. On most of the
datasets shown, SemiBoost is relatively stable with respect
to the scale parameter. However, a choice ofσ between 10-
th percentile to 20-th percentile of the similarity values is
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Fig. 5. Performance of baseline algorithm SVM with 10 labeledsamples, with increasing number of unlabeled samples added to the labeled set (solid line),
and with increasing number of labeled samples added to the training set (dashed line).
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Fig. 6. Performance of baseline algorithm SVM with 10 labeledsamples, with increasing value of the parameterσ. The increments inσ are made by
choosing theρ-th percentile of the similarities, whereρ is represented on the horizontal axis.

recommended, based on empirical observations.

5) Margin and Confidence:In this experiment we empiri-
cally demonstrate that SemiBoost has a tendency to maximize
the mean-margin. For unlabeled data, a popular definition of
margin is|H(xi)| [16], [17]. The mean margin is the empirical
average of|H(xi)| over the unlabeled data used for training.
Figs. 7((a)-(c)) show the mean-margin value on optdigits
dataset (classes 2,4) over the iterations using Decision Stump,
J48 and SVM as the base classifiers, respectively. The value
of the mean-margin increases over the iterations, irrespective
of the choice of the base classifier. However, it is important
to note that the minimum margin may not increase at each
iteration, although the test error decreases. When the training
data consists of a small number of labeled samples which
can be perfectly classified, the margin is largely decided by
the unlabeled data. Considering the margin over the unlabeled
data, the classifier at iteration 1 has a margin ofα1 for
all the unlabeled data, wheres at the second iteration, the
minimum margin isminxi

|H(2)(xi)| = |α1 − α2| ≤ α1 =
minxi

|H(1)(xi)|. In fact, over the iterations, the value of
minimum margin may be traded off to obtain a gain in
the performance, i.e. being in agreement with the similarity
matrix. Recently, it was shown in [34] that maximizing the
value of minimum margin does not necessarily translate to
a better performance by the classifier. It is argued in the
context of boosting that the approaches maximizing the mean-

margin greedily are preferable to those that maximize the
minimum margin. Fig. 8 shows the distribution of the value
of H(xi) over the iterations. The light and dark bars in the
histogram represent the classes 2 and 4, in the optdigits dataset
respectively. Note that as iterations progress, the classes get
more and more separated.

D. Convergence

According to Theorem 1, SemiBoost converges exponen-
tially. The following section demonstrates the convergence
of SemiBoost on an example dataset. To illustrate the con-
vergence, we chose the two most populous classes in the
optdigits dataset, namely digits 2 and 4. The change in the
objective function as new classifiers are added over iterations
is demonstrated in Fig. 9(a). which follows an exponential
reduction. Fig. 9(b) shows the value ofα over the iterations.
Initially, the value of α falls rapidly, and after around 20
iterations, the value is insignificantly small relative to that of
initial classifiers. This suggests that although SemiBooststill
needs more iterations to converge, the new classifiers added
in boosting will not significantly change the decision value.
Fig. 9(c) shows the accuracy of the SemiBoost with Decision
Stump as the base classifier, over the iterations.
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Fig. 7. The mean-margins over the iterations, on a single run ofSemiBoost on optdigits dataset (classes 2,4), using different base classifiers.
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Fig. 9. Plots of (a) objective function, (b)α value and (c) Accuracy of SemiBoost when run over two classes (2,4) of the optdigits dataset using Decision
Stump as the base classifier. The accuracy of the base classifier is 65.9%.

E. Comparison with AdaBoost

To evaluate the contribution of unlabeled data in improving
the performance of a base classifier, we compared the perfor-
mance of SemiBoost with that of AdaBoost on the same base
classifier (or weak learner) and using a similar experimental
procedure as in Section IV-B. Table III shows the performance
of three base classifiers Decision Stump, J48 and SVM (shown
in column 1) on 6 datasets shown in the top row. For each
classifier, the first two rows show the inductive performanceof
the classifier and its boosted version (using AdaBoost) trained
on 10 labeled samples. The third row shows the performance
of SemiBoost when unlabeled data is added to the same set
of labeled samples. The fourth and fifth rows, labeledlarge
and AB-large show the performance of the classifier and its
boosted version trained after labeling the unlabeled data used
in SemiBoost.

From Table III, we can see that the performance of Semi-
Boosted versions of the classifiers (SB-DS, SB-J48, and SB-
SVM) is significantly better than classifiers trained using
only labeled data, boosted (using AdaBoost) or unboosted
(rows 1 and 2 for each classifier section). Naturally, when
all the unlabeled data are labeled, the performance of the
classifiers and their boosted versions are significantly better
than SemiBoost (rows 4 and 5). The reduction in the inductive
performance of AB-small compared to the base classifier on
several datasets may be attributed to the overfitting due to
small number of training samples. The addition of unlabeled
data as a regularizing mechanism in SemiBoost avoids the
overfitting, thereby achieving an improved classifier.
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TABLE III
PERFORMANCE OF DIFFERENT CLASSIFIERS AND THEIR BOOSTED VERSIONS ON 6 UCI DATASETS. X-SMALL STANDS FOR THE CLASSIFIER TRAINED ON

A SET OF10 LABELED SAMPLES CHOSEN FROM THE DATA. THE PREFIXAB-X STANDS FORADABOOST WITH BASE CLASSIFIERX. SB-X STANDS FOR

SEMIBOOST WITH BASE CLASSIFIERX. X- LARGE STANDS FOR THE CLASSIFIER TRAINED BY LABELING ALL THE UNLABELED DATA USED IN SB-X.

Classifier austra bupa wdbc optdigits mfeat-fou isolet

Decision Stump

small 60.39 54.94 79.47 65.91 82.25 64.23
AB-small 62.55 56.45 70.02 63.20 77.62 64.82
SemiBoost 73.46 55.78 88.98 93.22 96.25 91.92
large 79.36 57.71 90.42 90.26 99.72 92.57
AB-large 81.70 68.44 94.44 99.98 99.72 97.68

J48

small 60.12 54.97 75.95 65.59 85.90 64.48
AB-small 60.68 55.09 68.86 61.40 75.80 65.33
SemiBoost 73.36 54.74 89.82 93.33 96.00 90.20
large 79.97 62.49 92.68 97.18 99.12 92.90
AB-large 82.42 66.21 94.96 98.97 99.12 96.68

SVM

small 65.64 52.05 75.74 90.31 98.78 89.58
AB-small 63.29 53.50 73.53 87.11 93.80 88.48
SemiBoost 71.36 54.02 88.82 96.35 99.85 95.12
large 85.57 58.15 94.81 99.66 100.00 99.72
AB-large 84.29 65.64 95.89 99.65 100.00 99.72

V. PERFORMANCE ONTEXT-CATEGORIZATION

We further evaluate the SemiBoost algorithm on the Text
Categorization problem using the popular 20-newsgroups
dataset2. We performed the evaluation of SemiBoost algorithm
with Decision Stump, J48 and SVM as the base classifiers on
binary problems created using 10 most popular classes of the
20-newsgroups dataset. Note that this experimental setup is
different from some other studies of semi-supervised learning
in which the one-vs-rest approach is used for evaluation.
Compared to one-vs-rest, the one-vs-one evaluation has the
following advantages:

• There is a large variation in the best performing su-
pervised classifier for the binary tasks. This enables us
to show that when SVM is not the best classifier for
a problem, then the methods that improve SVM using
unlabeled data may not be the best semi-supervised
algorithms to use.

• Semi-supervised learning algorithms rely on certain as-
sumptions about the structure of the data and the classes.
In one-vs-rest approaches, these assumptions are likely
to be violated. For instance, many semi-supervised algo-
rithms assume a large cluster gap between two classes.
By aggregating multiple classes into one negative class,
we expect to see a large cluster gap amongst the negative
class itself. Violation of the manifold assumption can be
explained similarily.

• There is a high imbalance in the data when we do a one-
vs-rest classification. While a knowledge of priors may be
used to incorporate this imbalance into semi-supervised
learning to achieve high performance, we assume that
nothing is known about the data other than the similarity
information and a few training examples.

2http://people.csail.mit.edu/jrennie/20Newsgroups/

• One-vs-one had been a popular approach for creating
multiclass classifiers. The testing time can be significantly
reduced in a one-vs-one setting by using a DAG based
architecture [35].

We generate all the 45 possible binary problems of the 10
classes. Due to the limited space, we include only results
on 10 binary problems created from 5 of the classes in the
20 newsgroups, summarized in Table IV, These results are
similar to the results on the 45 binary problems.The first
column in Table IV shows the classes chosen for creating the
binary problems. Each classification task contains a dataset
of approximately 2000 documents. We use the popular tf-idf
features computed over the words which occur at least 10
times in total, in all the 2000 documents. The tf-idf features
are later normalized per document. The dimensionality of the
each dataset is shown in column 2 of Table IV. We follow the
same inductive evaluation procedure as in Section IV-B. We
use 2 labeled samples per class in training the classifier. Weuse
the linear kernel (dot product between the feature vectors)as
similarity, popular for the text classification tasks. The induc-
tive performance of the different algorithms Decision Stump,
J48, SVM and their SemiBoosted versions, Transductive SVM,
Inductive LDS, Laplacian SVM are shown in Table IV. To
allow a fair comparison, the parameter valueC for all SVMs
is set to 1. The mean and standard deviation of the performance
over 20 runs of the experiment is reported.

Table IV shows that in the case of Decision Stump and
J48, SemiBoost significantly (at a 95% confidence level,
measured using independent sample paired t-test) improves
the performance on all the pairs of classes. The performance
of SVM is improved significantly on 5 out of 10 class pairs.
Also, we notice that SemiBoosted Decision stump performs
signficantly better than SemiBoosted SVM on all the pairs
of classes. Comparing the SVM based methods, SB-SVM
significantly outperforms LapSVM on 7 class pairs and ILDS
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TABLE IV
COMPARISON OF THE INDUCTIVE PERFORMANCE(MEASURED AS% ACCURACY) OF SEMIBOOST, TSVM, ILDS AND LAPSVM ON PAIRWISE BINARY

PROBLEMS CREATED FROM5 CLASSES OF THE20-NEWSGROUPS DATASET.

Classes DS SB DS J48 SB J48 SVM SB SVM TSVM ILDS LapSVM
(d)

1, 2 55.82 82.30 56.93 72.86 71.02 70.74 75.44 55.10 68.23
(3736) (14.0) (12.3) (15.5) (8.0) (8.7) (5.6) (13.2) (16.6) (3.9)
1, 3 54.61 85.95 56.24 77.05 72.17 74.83 89.34 58.88 71.34
(3757) (10.6) (9.6) (10.7) (8.0) (8.2) (5.4) (5.9) (20.2) (4.8)
1, 4 51.35 87.36 54.71 80.65 77.22 78.47 88.71 61.72 74.67
(3736) (7.1) (11.4) (13.4) (5.7) (9.0) (3.6) (6.8) (9.4) (3.1)
1, 5 55.72 91.37 57.55 86.65 74.84 82.64 92.35 66.45 78.01
(3979) (11.4) (7.8) (12.6) (6.7) (9.8) (4.3) (5.5) (16.7) (4.1)
2, 3 48.94 73.33 49.43 64.52 63.12 64.06 66.05 50.76 61.68
(4154) (2.3) (11.6) (2.1) (7.8) (5.2) (4.5) (10.6) (1.8) (3.8)
2, 4 49.60 88.43 49.40 78.07 69.47 74.85 81.50 50.32 70.95
(4143) (4.0) (9.5) (3.8) (5.0) (7.0) (3.2) (13.5) (2.1) (3.2)
2, 5 49.38 94.65 49.24 83.87 71.62 80.12 84.94 53.94 74.79
(4406) (1.9) (6.5) (1.6) (6.0) (6.6) (4.8) (12.4) (7.3) (3.4)
3, 4 51.16 90.22 51.46 77.34 72.22 75.26 81.98 50.08 71.45
(4130) (3.1) (8.6) (3.7) (7.2) (5.4) (5.1) (12.7) (2.7) (3.8)
3, 5 51.67 92.93 51.71 81.16 73.65 78.31 77.38 53.83 74.91
(4426) (4.0) (6.5) (4.9) (7.0) (8.3) (3.9) (16.2) (8.1) (4.2)
4, 5 51.68 79.51 51.53 68.27 62.08 68.07 67.54 52.39 65.05
(4212) (4.1) (11.5) (3.9) (8.4) (5.8) (5.3) (12.7) (6.5) (5.0)

on all the 10 pairs. TSVM outperforms SB-SVM on 5 out
of 10 class pairs. Overall, SB-SVM performs comparable to
TSVM and significantly better than LapSVM and ILDS. SB-
DS outperforms TSVM significantly on 5 out of 10 class
pairs, and LapSVM and ILDS on all the class pairs. The
poor performance of ILDS may be ascribed to the kernel used
by ILDS. ILDS uses a graph distance based kernel, which
may not be as suitable for text classification based tasks as a
linear kernel. From our experiments, we see that SemiBoosting
Decision Stumps is a viable alternative to the SVM based
semi-supervised learning approaches.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed an algorithm for semi-supervised learn-
ing using a boosting framework. The strength of SemiBoost
lies in its ability to improve the performance of any given
base classifier in the presence of unlabeled samples. Overall,
the results on both UCI datasets and the text categorization
using 20-newsgroups dataset demonstrate the feasibility of
this approach. The performance of SemiBoost is comparable
to the state-of-the-art semi-supervised learning algorithms.
The observed stability of SemiBoost suggests that it can be
quite useful in practice. SemiBoost, like almost all other
semi-supervised classification algorithms, is currently atwo-
class algorithm. We are exploring the multiclass extension
by redefining the consistency measures to handle multiple
classes. We are working towards obtaining theoretical results
that will guarantee the performance of SemiBoost, when the
similarity matrix reveals the underlying structure of data(e.g.,
the probability that two points may share the same class).
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