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Abstract—The intrinsic dimensionality of a set of patterns is impor-
tant in determining an appropriate number of features for representing
the data and whether a reasonable two- or three-dimensional represen-
tation of the data exists. We propose an intuitively appealing, nonitera-
tive estimator for intrinsic dimensionality which is based on near-
neighbor information. We give plausible arguments supporting the
consistency of this estimator. The method works well in identifying
the true dimensionality for a variety of artificial data sets and is fairly
insensitive to the number of samples and to the algorithmic parameters.
Comparisons between this new method and the global eigenvalue ap-
proach demonstrate the utility of our estimator.

Index Terms—Eigenvalues, interpoint distances, intrinsic dimension-
ality, near-neighbor information, outliers.

I. INTRODUCTION

HE TOPOLOGICAL or intrinsic dimensionality of a point
Tset refers to the minimum number of parameters needed
to generate the point set. For example, points lying along a
reasonably smooth curve are said to have intrinsic dimension-
ality one, independent of the dimensionality of the space in
which the points are represented. Similarly, points on a plane
or a surface with a few undulations are said to have intrinsic
dimensionality two.

A knowledge of the intrinsic dimensionality of a set of pat-
terns contributes to the solution of two important problems
in pattern recognition. First, what is an appropriate number
of features (measurements) for representing the data? That is,
how many of the features are essential in the design of a
pattern classifier? Second, does a reasonable two- or three-
dimensional representation of the data exist? One would like
to “look™ at the data, but unless such a representation is a true
picture of the original data, one can be led into improper deci-
sion rules and can formulate misleading ideas about the data.
An estimate of intrinsic dimensionality can also help evaluate
the effectiveness of algorithms designed to unfold or flatten
the original data representation.

We propose a new method for estimating the intrinsic dimen-
sionality of a set of points based on near-neighbor information.
‘That is, our method extracts local information about the true
‘dimensionality from a given set of points in an L-dimensional
ace. We explain the mathematical basis for our method,
explore some statistical and computational characteristics of
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the estimator, and demonstrate the method on several data
bases. We also compare our method to the standard method
based on eigenvalues of a covariance matrix.

II. BACKGROUND

Studies in intrinsic dimensionality can be dichotomized
according to the type of input information, either proximity
matrix! or set of pattern vectors. Intrinsic dimensionality
algorithms produce two types of information: 1) a configura-
tion of points, one per pattern (data item or pattern vector);
2) an estimate of the intrinsic dimensionality of the configura-
tion generated in 1). Our review below shows that several
algorithms have been suggested for 1), but little attention has
been paid to 2). Existing algorithms rely entirely on the eigen-
values of a covariance matrix to estimate intrinsic dimension-
ality even though Ball [1] demonstrated the perils of such an
approach over 10 years ago. Thus we are motivated to take a
different approach in estimating intrinsic dimensionality.

If the input information to an intrinsic dimensionality algo-
rithm consists of a proximity matrix, the relative positions of
the points in the output configuration should reflect these
proximities. Points close to one another in the configuration
should be very similar; points far apart, very dissimilar. Algo-
rithms for producing configurations with this property are
usually called multidimensional scaling algorithms, the best
known example of which is MDSCAL, due to Kruskal [2],
[3] and Shepard [4].

The criterion for the goodness of the configuration produced
by MDSCAL is called “‘stress” and it depends only on the
input proximities and the distances between points in the con-
figuration. When the rank order of the distances is the same as
the rank order of the proximities, stress is zero. The adoption
of rank order means that the input proximities are treated as
ordinal data. Thus any mathematical measure of the goodness
of the configuration can depend only on the distances in the
configuration space. Specifically, Kruskal’s stress is

1/2-
SKruskaI ={[ Z (dij - di])z]/ Z dlz/}

i<j i<j

where dj; is the (Minkowski) distance between the points
representing data items 7/ and j and the d;; are the values of the

1Each row and column in a proximity matrix corresponds to a data
item. If the entries are dissimilarities, such as Minkowski distances,
large values represent very dissimilar data items, or points far removed
from one another. If they are similarities, large values represent very
similar, or close, data items.
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d;; that would make the rank order of the interpoint distances
the same as that of the proximities. The d;; are obtained by
solving the monotone regression problem. When d;; = d;; for
all i and j, stress is zero and a perfect configuration exists, ac-
cording to the stress measure.

Stress is minimized by iteratively moving the points in the
configuration from their initial randomly chosen positions
according to a gradient-descent procedure that uses empirical
acceleration coefficients. This procedure creates a configura-
tion of points in a space of fixed dimensionality. The points
are moved so as to achieve a monotone relation between inter-
point distances and the information in the proximity matrix.
The algorithm ceases when the magnitude of a gradient vector
is relatively small. The intrinsic dimensionality itself is deter-
mined from a plot of the minimum stress versus dimensionality
of the configuration space. One looks for a knee, or a flatten-
ing of the curve. In practice, a stress of 5 or 10 percent is con-
sidered “good” on an objective basis. Even a larger stress is
acceptable if the researcher can interpret tlie axes in the con-
figuration space and use the configuration itself to further the
ends of the analysis.

When the input configuration consists of a set of patterns
in high-dimensional space, one can generate a proximity
matrix by computing, say, euclidean distances and proceeding
as in MDSCAL. However, the approach usually taken with
this type of input is to try to “unfold” the data, or flatten the
swarm of patterns into a lower dimensional space. This ap-
proach can be viewed as a nonlinear projection. The first com-
plete algorithm of this sort was suggested by Bennett [5] who
was attempting to reduce the dimensionality of a signal space
and uncover the number of parameters underlying signal gener-
ation. Bennett introduced an idea which has been adopted by
almost all subsequent workers in intrinsic dimensionality.
Bennett’s idea was based on his observation that if points are
uniformly distributed inside a sphere of radius r in an L-
dimensional space and if

Ry =1X, - Xz1/(2r)

where X and X, are random variables representing points in
this sphere and R is the (normalized) euclidean distance be-
tween them, called the interpoint distance, then the variance
of R, is a decreasing function of L, which may be expressed as

L var(R;) =~ constant

where var(R;) is the variance of R;. Thus increasing the
variance of the interpoint distances has the effect of decreasing
the dimensionality of the representation, or “flattening’ the
swarm of patterns.

Bennett’s algorithm involves two stages. The first stage
moves the patterns (in the original pattern space) so as to
increase the variance of the interpoint distances. The second
stage adjusts the positions of the patterns so as to make the
rank orders of interpoint distances in local regions the same in
both spaces. These stages are repeated, with suitable normal-
izations, until the variance of the interpoint distances levels
off, which indicates a flattening of the surface containing the
patterns. The actual intrinsic dimensionality of the flattened
surface is determined by the number of significant eigenvalues
of the covariance matrix computed in the configuration space.

Chen and Andrews [6] extended Bennett’s algorithm by
introducing a cost function to make Bennett’s rank-order
criterion more sensitive to local data regions. The basic idea is
still to maintain rank order of local distances in the two spaces.
By contrast, MDSCAL uses rank orders of all interpoint dis-
tances, with no preference given to the smaller distances.
Shepard and Carroll [7] limit consideration to the smaller
interpoint distances so as to pay more attention to local
neighborhoods.

Another nonlinear projection was suggested by Sammon [8]
who minimized a stress measure similar to Kruskal’s. Since
Sammon began with points in a high-dimensional space, he
could incorporate distances between these points in the stress
measure directly, as indicated below.

SSammon =[Z (di,; - di/‘)z/di,;] Z di,;

i<j

i<j

where d,-’; is the distance between patterns { and j in the original
pattern space and dj; is that in the two- or three-dimensional
configuration space. Sammon, like Kruskal, minimized stress
with a gradient-descent procedure that followed Kruskal’s
algorithm. It followed it so closely that Kruskal [9] subse-
quently demonstrated how a configuration very similar to
Sammon’s could be generated from MDSCAL.

Another variation on the stress criterion was suggested by
Chang and Lee [10]. The gradient descent used by Kruskal
and Sammon moved all points in the configuration space
simultaneously to minimize stress. Chang and Lee suggest
minimizing stress by moving the points two at a time. This
approach also attempts to preserve local structure while mini-
mizing stress. Unfortunately, the amount of computation
becomes prohibitive, even when only a moderate number of
points are involved and the results are dependent on the order
in which the points are paired. Chang and Lee propose a
“frame”” method for overcoming the computational problem
in which a representative number of points is fixed in the con-
figuration space and the remaining points are moved with
respect to the fixed points. A similar idea was used by Kruskal
and Hart [11] to study the intrinsic dimensionality of a large
number of binary patterns.

Several other approaches to the general intrinsic dimension-
ality problem have been suggested, including Shepard and
Carroll’s index of continuity [7], Kruskal’s indices of conden-
sation [12], and Kruskal and Carroll’s parametric mapping
[13]. Shepard [14] has summarized existing methods in
psychometrics for studying intrinsic dimensionality and pro-
posed several exciting ideas. Volumes [15], [16] have been
written on multidimensional scaling itself.

A unique approach to the study of intrinsic dimensionality
was recently proposed by Schwartzmann and Vidal [17] who
use the minimum spanning tree (MST) as the “information
invariant representing the data.”” The input data must consist
of patterns in a high-dimensional space. The swarm of pat-
terns is flattened into a low-dimensional space by replacing
each point by a weighted average (called a barycenter) of the
point and all points connected to it in the MST. This moving
average transformation smoothes the original surface contain-
ing the patterns. After restoring the length of the original
MST by uniform scaling, the barycenter transformation is
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repeated until either the connectivity pattern of the MST is
violated or until the variance of the interpoint distances stabi-
lizes. After this interesting idea, it is a little disappointing to
see that the actual intrinsic dimensionality is determined from
the number of significant eigenvalues, as in Bennett’s algorithm.

Two approaches for determining the actual intrinsic dimen-
sionality of a set of patterns have been suggested. Fukunaga
and Olsen [18] get around the inherent problem of using
eigenvalues of a covariance matrix on a global scale by compil-
ing tables indicating the intrinsic dimensionalities of local
regions, as judged by the number of significant eigenvalues of
covariance matrices computed from local data only. The main
drawbacks of this approach are the difficulty in assembling
several pieces of local information into a global picture of the
data and the need for interactive computation.

The only method for directly estimating intrinsic dimension-
ality available in the engineering literature was proposed by
Trunk [19]. His method is based on a series of hypothesis
tests and works as follows. An initial value of an integer
parameter k is chosen and the & nearest neighbors to each
pattern in the given set are identified. The subspace spanning
the vectors from the ith pattern to its k nearest neighbors is
constructed for all patterns. The angle between the (k + 1)st
near neighbor of pattern 7 and the subspace constructed for
pattern i is then computed for all i. If the average of these
angles is below a threshold, the rule is to decide that the
intrinsic dimensionality is k. Otherwise, k is incremented by 1
and the process is repeated.

Our method also uses near-neighbor information, but we
base our approach on a density estimator and determine intrin-
sic dimensionality without iterating over the dimensionality.

III. METHOD

Several aspects of the proposed method for estimating intrin-
sic dimensionality are considered in this section. The mathe-
matical motivation for the estimator is given first, followed by
the algorithm itself. Several theoretical and computational
properties of the estimator are then investigated.

A. Mathematical Basis

We begin with a set (X;, X3, ", X,) of L-dimensional
patterns assumed to be drawn independently and governed by
unknown density p(-). Our objective is to estimate the intrin-
sic dimensionality d of the swarm of patterns by deriving an
estimator d. The motivation for our estimator comes from the
well-known [20] estimator of p(x) given by

by =12 1)

where k is the number of near neighbors to x within a hyper-
sphere of radius Ry about x and V= V4RE is the volume of
the hypersphere. Here, V; is the volume of the unit d-
dimensional hypersphere given by

(ﬂ,)d/z -

()

Substituting the expression for ¥ into (1) and taking loga-
rithms produces

Vd =

27

log(Ry) = (1/d) log(k) + log[(n V45 (x))” H/)]. )

If the last term in (2) were independent of k, there would be
a linear relationship between log(k) and log(Ry) with a slope
of (1/d) and we could use (2) to estimate d. However, p(x) is
not independent of k and Ry is not uniquely determined. Our
strategy is to derive an equation similar to (2) which can be
used to isolate d.

Let rx , be the distance from x to the kth nearest neighbor
of x. If p(x) is continuous and nonzero at x, then for suffi-
ciently large n and small r, the density function for r , can be
taken as (Appendix I)

de1 (crd)k—l
(k)

=0, else )

Jrx(r) =cdr exp(-cr?), if r>0

where ¢ = np(x) V4. The expected value of rg  is

F@*ﬁ)[ "

KYr(k) Lnp(x) V,

1/d
] )

Define a sample-averaged distance to the kth nearest neighbor
over the set of patterns as

E(rk,x)zf rfk,x(r)dr=

n
e=(1/n) 3 rex;.
i=1

From (4), the expected value of this average distance is

n .
E(T)=(/n) 3 ECrex) =g — kG, (5)
i=1 k.d
where
K'91(k)
Gra= ALY
r(k ; _)
d
and

n
Co=(1/n) 3. [ (X)) V417,
i=1
Although C,, is sample-dependent, it is independent of k.
Taking logarithms in (5) yields an equation similar to (2)

log(G ) + log E(Fi) = (1/d) log(k) + log(Cp). (6)

The term log(Gy 4), although not independent of £, is close to
0O for all £ and d, as shown in Appendix II.

As an estimator for £(7;) we take the observed value of the
random variable 7; computed from the given sample. Using
this observed value in (6) defines an estimator dford

log(Gy.g) + 1og(Fe) = (1/d) log(k) + log(Cp,). (7

We can solve for d since a plot of log(7;) as a function of
log(k) will have a slope of(l/(?). The term C,, affects only the
intercept of this plot and thus the underlying density p(-) need
not be known to estimate d.

We solve for d iteratively. The initial estimator dy is ob-
tained by setting log(Gy 4) to zero and fitting a least square




regression line to a plot of log(7) versus log(k) for k=

,K for some K. We then use the value for log(Gy g, )
and f1t another regression line to obtain d,. We continue until
reaching an i for which

\d; - d;y1 <€
for some €. The estimator is d = 3,. In practice, d is rounded
to the closest integer.

B. Algorithm

The actual algorithm used to compute @ in (7) is straight-
forward, which is one advantage of the method. A flowchart
is given in Fig. 1. Details of the computation are explained

below.
The term LOGR(k) in Fig. 1 refers to the term log(7; ) in (7)
LoGR(K) = log [(l/n') > rk,Xl.]. ®)
j

In (7), the sum is from 1 to n. However, empirical studies
showed that including samples on the edges of the swarm of
samples, or outliers, substantially increased the sample variance
and distorted the estimate of d. Several schemes can be used
to identify outliers, We define a measure of the average dis-
tance M.y, and a measure of the spread of the distances
Smax, as follows:

Mmax = (l/n)z TR, X;
j=1

Smax (I/n-1) Z (rx Xj T mmax)
j=1

The sum in (8) covers all n’ values of j for which

rK,X]' <mmax +smax-

The following approximation for the first term in (7) is
based on the Taylor series expansion for the logarithm of the
gamma function [22] and is valid even for the worst case
whenk=1andd=2

,@-D@d-2) @-1”

log(Gk,d) =

2kar2 12k2d®  12k%d*
(d-1)(d-2)d?+3d-3) ]
- +0(1/k°).
120k%d® (7%

Equation (7) involves d in two places. The algorithm in
Fig. 1 computes successive estimates of 4 until the difference
between the estimates is sufficiently small. We took € =0.01
in our studies because d should be an integer. The number of
iterations through the loop almost never exceeded four. The
adjustment required for LoGR(k) in Fig. 1 is simply to add
log(Gk’gi_l) for each k. The equation used to compute d; is
obtained from the standard equation for the slope of a regres-
sion line.

K Y (log k) (log Fy) - (Zlog k) (E log 7k>
K 2 (log k)? - ( > log k)2

All sums are fork=1,2,--- K.

d;=

Set
K, ¢,
Maxiter

X Xguenes n
in L-dimensionp

l

Compute
Tk, X. |
],

all k, 3

o
[L]
—

=

Compute
LOGR (k)
all k

Remove
outliers

Compute Ao

i«o

Adjust
LOGR (k)
for di-l

i > Maxiter

Fig. 1. Procedure for computing a

The parameter K, the number of near neighbors used, is not
critical. Our empirical studies show good results for a wide
range of values of K, even for K = 2.

One other point about our method should be made. One
could conceivably estimate d at each sample, then average the
estimates to obtain a global estimate of d. Specifically, sup-
pose E(rg ) in (4) were replaced by ry x,, the distance from
X; to its kth nearest neighbor. Letting

¢i = [np(X)) Val M4
and taking logarithms, we obtain
log(Gy,a) + log(rx,x;) = (1/d) log(k) + log(c;).

An estimator, say dX, for d could be obtained in the same
way that d was formed in Fig. 1. Then one might use

(1/n) 2 dx,
i

to estimate d.

The difficulty with this approach is that the means of the
individual terms c’i\xi tend to be very large. In fact, one can
show that, for K =2,
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Fig. 2. Density of dina special case (Section III-C).

3X,‘ = [(rZ,Xi/rl,Xi) - 1]_1

and £ (3\ Xi) does not exist. For this reason, we chose the pro-
cedure that culminates in (7).

C. Distribution of d for a Special Case

An exact distribution for the estimator d in (7) is desired to
study the behavior of the expected value and variance of the
estimator. Unfortunately, determining the distribution for dis
difficult, even for simple underlying distributions. We have,
‘however, obtained the distribution for @ when the underlying
distribution is uniform over the interval (0,1), L =d =1, and
'n=3. We will show that d has reasonable properties for this
special case.
~ If we use only two near neighbors, say the kth and (k + 1)st,
(7) leads to
Gkﬂ,&

Frey o k1
2L 4 log XL = (1/d) 1 . 9
log Gea 187, (1/d) log p ©

¥

~ Using the definition of G 4 in (5)

k+1 1
—10g[l+—/\].
kd

- Gi+1,d ~
log ———=(1/d) log
1 ., (

(10)

>

Substituting (10) into (9)
I

KGoer - 7) (1

e special case being considered here, each pattern in the
X, X;) has at most two near neighbors. Setting k = 1

in (11) shows that
a\_‘?l/(Fz - 7). (12)

We now determine the density function for d in (12). We
assume, without loss of generality, that the sample patterns are
numbered so that

X, <X, <X,

Define 4= maX(X2 - Xl, X3 - Xz) and B = mln(X2 - Xl,
X3 - X,). The joint density function for 4 and B can be
shown to be

fap(@b)=12(1-a-b), for 0<a<l
and 0<b<min(e, 1 -q)
=0, else.

The sample-averaged distances to the nearest neighbors are
Fi=(A+2B)/3 and 7, =(34 + 2B)/3. From (12), the esti-
mator is

d=(A4 +2B)]24A.

It follows that the density for d, which is pictured in Fig. 2, is

f()=2/(v+0.5)%,
=0,

for 0.5<v<1.5
else.
The mean and variance of d are
E@)=21In(2)-0.5=0.886
var(d) =2 - 4(In 2)? = 0.078.

Thus d provides a reasonable estimate of the true intrinsic
dimensionality of one. As seen in Fig. 2, the range for d is
centered at this true value,
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D. Asymptotic Behavior of[i\ When K = 2
We now propose an intuitive argument showing the consis-

tency of d when K = 2. The expected value of din (12), based
on n samples, can be written as follows:

7 Y R S
E(d) _/; j; (;/s)_lfr"pr_z(s’t)det

where fr{’f)r—z (.,.) denotes the joint density for the random
variables

n
7 =(1/n) Z Ti, X for k=1, 2.
i=1

Since 7, and 7, are sums of jointly distributed random vari-
ables, one can apply a Central Limit Theorem under certain
conditions. Showing that such conditions are satisfied is very
difficult in this case. We rely on the following intuitive
argument.

For each i, ry x; and r, x, have a joint distribution whose
covariance matrix is finite. Also, for a given k and i #7, e
and Tkx; Are only weakly dependent. Under these conditions,
it seems reasonable to apply the bivariate form of the Central
Limit Theorem [21], which implies that the joint density of
7y and 7, approaches a §-function as n grows large

£ 5,00~ 8- B, 1 - B
Therefore, as n > oo, E(c/l\) can be written as follows and evalu-
ated with (5):
1 —
[EFD/E(R)] -1

In addition, it is cler : that

E@d)~> d.

var(d) I 0.

Thus, under our assumptions, d is a consistent estimator of d
when K =2,

IV. EXPERIMENTAL RESULTS

We applied our method to several sets of artificial data and
compared the estimates of intrinsic dimensionality to the out-
comes of global eigenvalue analyses. The results are summa-
rized below, Our method performed consistently well, even
when the eigenvalue analysis provided incorrect answers.

A. Data Generation

Six types of data were investigated.

1) Gaussian Data: Three sets of Gaussian data were gener-
ated from L-variate Gaussian distributions with zero-mean vec-
tors and unit-covariance matrices. The three sets were for
L =1, 2,and 3. The unit-covariance matrices imply thatd = L
for all three sets.

2) Surface Data: Two sets of uniform data were generated
by radially projecting the three-dimensional Gaussian data onto
the surface of a sphere (L = 3,d = 2) and the two-dimensional
data onto a circle (L =2,d=1). In both cases, the distribu-
tion of points over the surface can be shown to be uniform
(see Appendix III).

0.2 7

Fig. 3. Sketch of helix data.

3) Interior Data: Three more sets of data were generated
by uniformly distributing points in the interior of a sphere
(L = 3), interior of a circle (L = 2), and interior of an interval
(L = 1), as explained in Appendix III. In all cases,d = L.

4) Filter Data: Bennett’s original work [5] was motivated
by trying to determine the minimum number of free system
parameters required to describe a set of system outputs. We
generated a data set in this spirit by choosing a point at random
in the interior of a unit circle and treating the point g as a pole
of a digital filter. That is, letting § be the complex conjugate
of g, this point defines the z-domain transfer function

zZ
HO= G p6e- 9

which has impulse response

q = lql exp(jo).

We observed h(n) forn=1,2,--+,20. Since h(1)=1, we
have L =19. What is the “true” intrinsic dimensionality here?
Since ¢ has a magnitude and phase angle that can be chosen
independently, we might consider d= 2.

5) Helix Data: Helix data have been used in several studies
on intrinsic dimensionality [8], [17]. Points were chosen at
random along a helix described by the following equation:

x = cos 0
y =sin 8
z=0.1(8)
0<0 <4m.

For this data set, L =3 and d=1. A sketch of the helix is
shown in Fig. 3.

6) Hyperellipsoidal Data: Five sets of data from three-
dimensional Gaussian distributions were generated to study
the effect of noise. The mean vectors of these distributions
were the zero vector and the covariance matrices have the

following form:
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Fig. 4. Average d for Gaussian data.

The values of gy, gy, and g, and the corresponding d values
are given below.
a) 0,=100, 0,=0,=1, d=1;

b) 0,=10, 0,=0,=1, d=1 or 3;
¢) 0x=0,=0,=1, d=3;
d) ole, 0y=oz=10, d=2 or 3,

e) o,=1, 0,=0,=100, d=2.

Cases a) and b) represent noisy lines of different lengths.
Case ¢) is a hypersphere and is included for comparison pur-
poses. Finally, cases d) and e) represent noisy circles.

B. Results

Three parameters are associated with each method for gener-
ating data: n (the number of patterns), K (the maximum num-
ber of near neighbors used), and M (the number of Monte
Carlo runs for each situation). We let M be 10, n take on the
values 5, 10, 20, 50, and 100, and K be 2, 4,9, and 19. We
ran all cases for which K <n.

The mean and variance of d for the ten Monte Carlo runs
were computed for n, K, and data type fixed. The average
values of d are plotted in Figs. 4-9. For the first five data sets,
the abscissas represent n, the number of patterns, and one
curve is drawn for each K and each data set. In almost all
cases, the average dis very close to d when n 2 10. The filter
data present an unusual case in that the average d is closer to 3
than to 2. Perhaps more samples are needed to discern the
true intrinsic dimensionality. The ratio between the separa-
tion of the coils and the radius of the helix in Fig. 3 is small,

making this a difficult problem. The plot of d for the ten
Monte Carlo runs shown in Fig. 8 indicates that our algorithm
was able to obtain a good estimate of the intrinsic dimension-
ality for n 2 50. For the hyperellipsoidal data, the results for
K =4 are given in Fig. 9. Each curve in this figure represents
one of the five cases. For cases a), ¢), and ¢), d approaches the
desired values, while for cases b) and d), d is within the range
of expected values. Other values of K give comparable results.

In all cases, the variance of c?, computed over the ten Monte
Carlo runs, decreased as n increased. For n =100, the largest
variance occurred when K =2 for the three-dimensional
interior data; the range of the variance across all runs was
(025, 0.001). Increasing K tended to decrease the variance
of d. Deleting the outliers also tended to decrease this vari-
ance, especially in the filter data. This effect was specially
apparent for small values of n, at which outliers would have
an unusually strong influence.

C. Comparison

Table I shows the two or three most significant eigenvalues
(normalized so that all eigenvalues sum to 100) of the sample
covariance matrices for one of the ten cases of each data set.
That is, we estimated the covariance matrix from the given
sample and computed its eigenvalues. The number of signifi-
cant eigenvalues is normally taken as a measure of intrinsic
dimensionality.

The Gaussian data show the eigenvalues approaching one
another as n increases. Theoretically, of course, they should
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be identical. Using eigenvalues to estimate intrinsic dimension-
ality requires judgement about which eigenvalues are “‘signifi-
cant.” One hopes that the eigenvalues are either large or very
small to simplify this judgement. For instance, the eigenvalues
computed from the three-dimensional surface data show the
same character as those computed from the interior data, even
though ¢ = 2 for the surface data and d =3 for the interior
data. Our method discriminated well while the eigenvalue
method failed. The difficulty inherent in the eigenvalue
scheme is exemplified by the filter data. For # =100, one
could make arguments for one, two, or three significant
eigenvalues.

V. Di1scussioN AND CONCLUSIONS

We have proposed a new method for directly estimating the
intrinsic dimensionality of a set of patterns that requires only
near-neighbor information. Our estimator has three main ap-
plications. First, it can follow one of the data-flattening algo-
rithms [5], [6], [10], [17] and provide a more realistic esti-
mate of intrinsic dimensionality than the global eigenvalue
method, especially when the output of the data-flattening
algorithm is highly warped. Second, our estimator can guide
the choice of an appropriate number of dimensions for repre-
senting the data. One can then concentrate on establishing a
linear or nonlinear projection for the original patterns without
worrying about the appropriate dimensionality of the new
space. Third, one could base a data-flattening algorithm on
the criterion of minimizing our estimator as opposed to mini-
mizing stress or minimizing variance of interpoint distances.
We hope to investigate this possibility in the future.

Our estimator exhibited good results for a variety of artificial
data. Of special interest was its performance on surface data
where the global eigenvalue method failed. Our method does
not require interaction between user and data during computa-
tion, so it is suitable for a wider variety of situations and com-
puter installations than some other nonglobal methods [18].

Our method of estimating intrinsic dimensionality uses
distances to the nearest neighbors and thus is dominated by
local information. If the measurements are noisy or the hyper-
surface on which the patterns lie is thick, then using local
information will positively bias our estimate. For example, a
thick spherical shell will be indistinguishable from a solid
sphere if only the first few neighbors are considered. The
desired value of the intrinsic dimensionality, two, cannot be
recovered either by global or local information alone. This
effect is apparent in Fig. 9, where, for K = 4, the estimator d
for case b) increases from approximately 1 to approximately
3 as the number of samples increases. That is, for n >> K,
local information dominates the estimator; while for n ~ K,
almost all samples are required to capture K near neighbors.

Two effects observed in our empirical study require com-
ment. First, in all cases, the value of K chosen did not mate-
rially affect d when n grew large. For small sample size, the
most erratic behavior in d was experienced when K =2.
Obviously, if the surface is wrinkled or has a high degree of
curvature, then the number of samples needed to obtain a
good estimate of d has to be large so that the local neighbor-
hood used for our estimate is small. Second, it appears that

edge effects negatively bias our estimator (Fig. 6) even though
our algorithm excludes the outliers. Edge effects are amelio-
rated when the number of samples increases.

The statistical properties of our estimator are not imme-
diately apparent. The distribution of @ for arbitrary K and n
has not been worked out. We were able to show that d has
reasonable properties in the simple case of three points uni-
formly distributed on an interval. We also proposed a plausi-
ble argument for consistency of d when K = 2.

The algorithm for computing dis straightforward. It involves
only three parameters, €, K, and Maxiter, and its performance
is insensitive to wide ranges of values of these parameters. The
computation is dominated by the determination of near neigh-
bors, so the amount of computation varies as n*L. If one is
computing near neighbors for some other purpose, such as
clustering [23], decision-making [24], or data representations
[8], [25], [26], the extra computational burden imposed by
our algorithm is not great. In addition, several fast methods of
computing near neighbors for small values of L have recently
been developed [27], [28] and our algorithm will benefit
from their use.

APPENDIX |
DENs1TY OF DISTANCE TO ATH NEAREST NEIGHBOR

The density function for ry ., the distance from x to its kth
nearest neighbor among (X, X, -, X,,), is required in Sec-
tion III-A, and is derived in this Appendix. The assumptions
are as follows.

1) The underlying density p(-) is constant over S, (r), a
sphere of radius r centered at x whose volume is ¥V = V,r9.

2) Observing the samples which fall in S, (r) is equivalent to
performing a sequence of n Bernoulli trials with probability
p(x) V of “success,” or falling within S, (r). Let N,(r) be a
random variable denoting the number of samples in S, (r).
The previous assumptions imply that

n
m

Pr[Ny(r) = m] =< > [P VI™([1-p(x) V]"™,

o<m<n. (L.1)

The density function f , () for r , can be expressed in terms
of N, (r) as follows:

fex()= lim (1/Ar)Pr(r<rg, <r+Ar)
Ar—0
= lim (1/Ar) Pr[N,(r+ Ar)=k|N,(r)=k - 1]
Ar—0
‘Pr[N,(r)=k-1].

Assumption 1) implies that the first factor is asymptotically
np(x) AV where

AV =V (r+ Ar)? - Va(r)? = Va(drd ' Ar) + 0(Ar).
Thus,
fix () =np(x) Vadr? 'Pr[N,(r)=k - 1].

The Poisson approximation to the binomial probability in
(1.1) produces a usable form for the density. The approxima-
tion is
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TABLE 1
MOST SIGNIFICANT EIGENVALUES (NORMALIZED)

n

Data set 5 10 20 50 100
3-Dim Caussian| 61.14 47.08 41.00 42.14 44.06
33.14 34.91 38.18 31.28 32.61
5.71 18.01 20.82 26.58 23.33
2-Dim Gaussian| 62.67 76.08 70.63 54.93 52.72
37.32 23.92 29.37 45.07 47.28
3-Dim Surface 55.86 48.54 43.94 39.69 36.94
of Sphere
29.26 28.70 34.15 31.55 34.37
14.88 22.77 21.91 28.76 28.69
2-Dim on the 59.72 66.37 56.16 58.74 53.72
Circle
40.28 33.63 43.84 41.26 46.28
3-Dim Intcrior | 50.24 49.85 45.82 39.03 37.58
of Sphere
33.22 30.11 35.15 31.19 33.40
16.54 20.04 19.03 29.78 29.02
2-Dim Interior| 63.60 70.14 53.60 60.01 52.87
of Circle
36.40 29.86 46.40 39.99 47.13
Filter 67.3 92.2 78.4 64.8 53.1
27.7 4.5 10.0 13.7 24.3
5.0 1.8 5.8 10.7 8.3
Helix 64.57 58.78 51.13 15.95 49.45
27.77 30.67 37.49 45.00 41.61
7.66 10.55 11.38 9.05 8.94
Hyperellip-
soidal
(a) 99.98 99.97 99.98 99.98 99.98
(b) 98.24 97.87 98.04 98.46 98.43
() 73.78 60.84 46.96 39.72 38.77
18.22 22.48 32.08 33.48 31.89
8.00 16.67 20.97 26.79 29.33
(d) 7.06 75.23 53.83 55.43 51.95
22.80 24.43 45.77 43.94 47.43
(e) 77.13 75.47 54.02 55.78 52.27
22.87 24.53 45.97 44.22 47.72

e 1

PriNv,(r) =k - 1] e

exp[-np(x) V].

Substituting and letting
c=np(x) V4
produces the final equation for the density

cdrd = (crd)k-1

I exp(-cr?).

fk,x(r)=

The Poisson approximation is valid if  is large, p(x) V4r? is
small, and np(x) V4r9 is moderate.
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APPENDIX II
Bounps oN log(Gk,q4)

In this Appendix, we demonstrate a bound required in Sec-
tion III-A. We first show that forallk =2 1andd > 1

KT (k 1

(1) <log N log(G, ).
Ik+— F(l + —)

d d

.1

0 <log(Gyg4) = log

Substituting z for 1/d makes (2.1) equivalent to
0<g,(2)<g,(2), for 0Kz
where
gr(z)=zlog(k) +log T'(k) - log I'(k + z).
Since
8, (0) =g« (1) =0,

it will suffice to show that for 0 <z <1, the second deriva-
tives satisfy

£81(2) <gx(2) <O. (2.2)
However, (2.2) follows from Davis [22]:

forall k

G@=-3 (+2)7.

i=k
In addition,
log(G, 4)<0.12

the maximum occurring at d =~ 2.17. Thus, we conclude that
0<log(Gk4) <0.12fork>1andd > 1.

APPENDIX III

GENERATION OF UNIFORMLY DISTRIBUTED DATA
ON THE SURFACE AND IN THE INTERIOR OF A
HYPERSPHERE

If z is an L-dimensional Gaussian random variable with mean
vector 0 and covariance matrix 0%/, then because there is no
preferred direction from the origin

Zz

llzll

is uniform over the interior of an L-dimensional hypersphere.
[29]. Also,if r is a random variable uniform on (0, 1), then

Z,a/m)

llzl|
is uniform over the interior of an L-dimensional hypersphere.
Thus creating surface and interior data requires L and L + 1
random numbers, respectively (one for each coordinate of z
and a value of r), for one pattern.

Straightforward rejection methods such as generating uni-
form points in a hypercube and rejecting points outside of the
hypersphere are grossly inferior to this method even for mod-
erate values of L(L > 3) since the ratio of the volume of a
hypersphere with radius 1 to the volume of a hypercube of
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side 2 is

L2

L
r{=+1)2~
(2 )

which approaches zero very rapidly as L increases. For L =10,
about 4000 random numbers would be required to generate
one pattern in the interior of a hypersphere by a rejection
method as compared to 11 by our method.
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An Optimal Frequency Domain Filter for Edge
Detection in Digital Pictures

K.SAM SHANMUGAM, sENIOR MEMBER, IEEE, FRED M. DICKEY, MEMBER, IEEE,
AND JAMES A. GREEN, STUDENT MEMBER, IEEE

Abstract —Edge detection and enhancement are widely used in image
processing applications. In this paper we consider the problem of op-
timizing spatial frequency domain filters for detecting edges in digital
pictures. The filter is optimum in that it produces maximum energy
within a resolution interval of specified width in the vicinity of the
edge.

We show that, in the continuous case, the filter transfer function is
specified in terms of the prolate spheroidal wave function. In the dis-
crete case, the filter transfer function is specified in terms of the
sampled values of the first-order prolate spheroidal wave function or in
terms of the sampled values of an asymptotic approximation of the
wave function. Both versions can be implemented via the fast Fourier
transform (FFT). We show that the optimum filter is very effective for
detecting blurred and noisy edges. Finally, we compare the perfor-
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mance of the optimum edge detection filter with other cdge deteetion
filters using a variety of input images.

Index Terms—Edge detecting filters, edge enliancement, exponential
approximation, digital picture processing, optimal edge detection, pro-
late spheroidal wave functions.

I. INTRODUCTION

EDGE detection is an important operation in a number of
image processing applications such as in scene analysis and
character recognition. Edges are defined as large and sudden
changes in some image attribute, usually the brightness. The
usual aim of edge detection is to locate edges belonging to
boundaries of objects of interest. While the human eye per-
forms this task easily, the detection of edges is a complex task
to automate. Some of the difficulties in edge detection are
caused by noise in the image but much more so by the fact
that edges are often blurred.

Many edge detection methods have been proposed for de-
tecting and/or enhancing edges in digital images. Most of these
procedures use local operations on the elements of the input
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