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ABSTRACT
Data clustering is an important task in many disciplines. A
large number of studies have attempted to improve cluster-
ing by using the side information that is often encoded as
pairwise constraints. However, these studies focus on design-
ing special clustering algorithms that can effectively exploit
the pairwise constraints. We present a boosting framework
for data clustering, termed as BoostCluster, that is able
to iteratively improve the accuracy of any given clustering
algorithm by exploiting the pairwise constraints. The key
challenge in designing a boosting framework for data clus-
tering is how to influence an arbitrary clustering algorithm
with the side information since clustering algorithms by defi-
nition are unsupervised. The proposed framework addresses
this problem by dynamically generating new data represen-
tations at each iteration that are, on the one hand, adapted
to the clustering results at previous iterations by the given
algorithm, and on the other hand consistent with the given
side information. Our empirical study shows that the pro-
posed boosting framework is effective in improving the per-
formance of a number of popular clustering algorithms (K-
means, partitional SingleLink, spectral clustering), and its
performance is comparable to the state-of-the-art algorithms
for data clustering with side information.

Categories and Subject Descriptors
I.5.3 [Clustering]: Algorithms; H.3.3 [Information Search
and Retrieval]: Clustering

General Terms
Algorithms

Keywords
Boosting, Data clustering, Semi-supervised learning, Pair-
wise constraints
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1. INTRODUCTION
Data clustering, also called unsupervised learning, is one

of the key techniques in data mining that is used to un-
derstand and mine the structure of unlabeled data. The
idea of improving clustering by side information, sometimes
called semi-supervised clustering or constrained data cluster-
ing, has received significant amount of attention in recent
studies on data clustering. Often, the side information is
presented in the form of pairwise constraints: the must-link
pairs where data points should belong to the same cluster,
and the cannot-link pairs where data points should belong
to different clusters. There are two major approaches to
semi-supervised clustering: the constraint-based approach
and the approach based on distance metric learning. The
first approach employs the side information to restrict the
solution space, and only finds the solution that is consistent
with the pairwise constraints. The second approach first
learns a distance metric from the given pairwise constraints,
and computes the pairwise similarity using the learned dis-
tance metric. The computed similarity matrix is then used
for data clustering.

Although a large number of studies have been devoted to
semi-supervised clustering, most of them focus on designing
special clustering algorithms that can effectively exploit the
pairwise constraints. For instance, algorithms in [4, 5, 23]
are designed to improve the probabilistic models for data
clustering by incorporating the pairwise constraints into the
priors of the probabilistic models; the constrained K-means
algorithm [27] exploits the pairwise constraints by adjust-
ing the cluster memberships to be consistent with the given
constraints. However, it is often the case that we have a
specific clustering algorithm that is specially designed for
the target domain, and we are interested in improving the
accuracy of this clustering algorithm by the available side
information. To this end, we propose a boosting framework
for data clustering, termed as BoostCluster, that is able
to improve any given clustering algorithm by the pairwise
constraints. It is important to note that the proposed algo-
rithm does not make any assumption about the underlying
clustering algorithm, and is therefore applicable to any clus-
tering algorithm.

Although a number of boosting algorithms (e.g., [10]) have
been successfully applied to supervised learning, extending
boosting algorithms to data clustering is significantly more
challenging. The key difficulty is how to influence an ar-
bitrary clustering algorithm with the given pairwise con-
straints. To overcome this challenge, we propose to encode
the side information into the data representation that is the
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Figure 1: An example illustrating the idea of iter-
ative data projections. (a) shows the original data
distribution, projected to the space spanned by its
two principal components; (b)-(d) show the data dis-
tributions based on the new representations in the
projected subspaces that are generated in iteration
1, 2, and 7.

input to the clustering algorithm. More specifically, we will
first find the subspace in which data points of the must-link
pairs are close to each other while data points of the cannot-
link pairs are far apart. Then, a new data representation is
generated by projecting all the data points into the sub-
space, and will be used by the given clustering algorithm
to find the appropriate cluster assignments. Furthermore,
the procedure for identifying the appropriate subspace based
on the remaining unsatisfied constraints, and the procedure
for clustering data points using the newly generated data
representation will alternate iteratively till most of the con-
straints are satisfied. Although the idea of incorporating
constraints into clustering through the generation of new
data representations is not completely new, the existing ap-
proaches [12, 17, 19, 29] do not take into account the per-
formance of the clustering algorithms while generating the
data representations, and therefore only achieve sub-optimal
performance.

Figure 1 illustrates the idea of iterative data projection.
The data points used in this illustration are sampled from
the “scale” dataset that will be described later in Section
4.1. They belong to three clusters that are labeled in Fig-
ure 1 by legends 4, ◦, and ×, respectively. A partitional
clustering algorithm is used in this illustration. Sub-figure
(a) shows the original data distribution projected into a 2D
space that is generated by PCA. We clearly see that many
data points of the cluster × overlap heavily with the data
points of the clusters 4 and ◦, and they are difficult to be
separated. The must-link and cannot-link constraints are
indicated in Figure 1(a) by solid lines and dotted lines, re-
spectively. Figure 1(b)-(d) illustrate the projected data dis-
tributions based on the new representations that are gener-

ated by the proposed boosting framework in iteration 1, 2,
and 7, respectively. The data representations generated in
different iterations are helpful in separating the data points
in the cluster × from those in the other two clusters.

The remaining paper is arranged as follows: Section 2
briefly reviews the previous work on semi-supervised clus-
tering. Section 3 describes the problem of boosting a given
clustering algorithm by a set of pairwise constraints and in-
troduces the proposed BoostCluster framework. Section 4
presents the results of our empirical study. Section 5 states
conclusions of this work.

2. RELATED WORK
The constraint-based approach for semi-supervised clus-

tering utilizes the side information to restrict the feasible so-
lutions when deciding the cluster assignment. Early work in
this category took the side information as hard constraints,
and only considered the cluster assignments that were abso-
lutely consistent with the given pairwise constraints. In [6,
27], the authors proposed the constrained K-means algo-
rithm by adjusting the cluster memberships to be consis-
tent with the pairwise constraints. In [26], a generalized
Expectation Maximization (EM) algorithm is proposed to
incorporate the pairwise constraints into the EM algorithm.
In particular, the cluster assignments that are inconsistent
with the constraints are excluded from the partition func-
tion when computing the posterior probability for the clus-
ter memberships. One problem with treating the side infor-
mation as hard constraints is that we may not be able to
find feasible solutions that are consistent with all the con-
straints [7]. To overcome this problem, a number of studies
view the side information as soft constraints. The key idea is
to penalize, not to exclude, the cluster assignments that are
inconsistent with the given pairwise constraints. In [4,5,23],
the authors present probabilistic models for semi-supervised
clustering where the pairwise constraints are incorporated
into the clustering algorithms through the Bayesian pri-
ors. In [22], the authors modified the mixture model for
data clustering by redefining the data generation process
through the introduction of hidden variables. In [3], the
authors extend the framework of semi-supervised cluster-
ing by selecting the most informative pairwise constraints
to solicit the labeling information. In [8], the authors study
semi-supervised clustering for the hierarchical clustering al-
gorithm. In [21], a mean field approximation method was
proposed to learn from constraint data. In [17], a spectral
learning framework was proposed to incorporate the side in-
formation into data clustering.

Another approach to semi-supervised clustering is to first
learn a distance metric from the given pairwise constraints.
The pairwise similarity between any two examples is then
computed based on the learned distance metric, and a clus-
tering algorithm is applied to the computed similarity ma-
trix. The key to this approach is to effectively learn a dis-
tance metric from the side information. Zhang et al. [32] pro-
posed to learn a distance metric by a linear regression model.
Xing et al. [29] formulated the distance metric learning prob-
lem as a constrained convex programming problem. This al-
gorithm is extended to the nonlinear case in [20] by the intro-
duction of kernels. Yang et al. [30] proposed a local distance
metric algorithm that is designed to address the problem of
distance metric learning for multi-modal data distributions.
Golderberg et al. [11] presented the neighborhood compo-



nent analysis algorithm that learns a local distance metric
by extending the nearest neighbor classifier. Weinberger [28]
presented a large margin nearest-neighbor classifier for dis-
tance metric learning that extended the neighborhood com-
ponent analysis to a maximum margin framework. Discrim-
inative component analysis [15] learns a distance metric by
extending the relevance component analysis to effectively ex-
plore both the must-link and the cannot-link constraints si-
multaneously. In [13,14], the authors extended the boosting
algorithms to learn a distance function from given pairwise
constraints. Schultz and Joachims [25] extended the frame-
work of support vector machine to learn distance metrics
from the pairwise comparisons.

Finally, a few studies cluster data points by a similarity
matrix that is directly modified according to the pairwise
constraints. In [19], the authors proposed to modify the
similarity matrix by linearly combining the original similar-
ity matrix with the pairwise constraints. Klein et al. [18]
proposed to modify the similarity matrix by propagating
the pairwise constraints through the nearest neighbors.

3. BOOSTING CLUSTERING
Let X = (x1, . . . ,xn) denote the collection of examples to

be clustered, where n is the total number of examples and
each example xi ∈ R

d is a vector of d dimensions. We use
a matrix S+ ∈ R

n×n to represent all the must-link pairs,
where S+

i,j is one when examples xi and xj form a must-
link pair, and zero otherwise. Similarly, we use a matrix
S− ∈ R

n×n to represent all the cannot-link pairs, where
S−

i,j is one when examples xi and xj form a cannot-link
pair, and zero otherwise. Let A denote the given clustering
algorithm to be improved. In order to make this framework
general, we treat the clustering algorithm A as a black box
that only takes the data representation of all examples as
its input and outputs the cluster memberships for the given
examples. Note in this work, we assume that the number of
clusters is given.

3.1 Objective Function
The first step toward the boosting algorithm is to con-

struct an appropriate objective function. As described in
the introduction section, the goal of the boosting algorithm
is to identify the subspace that keeps the data points in the
unsatisfied must-link pairs close to each other, and keeps
the data points from the unsatisfied cannot-link pairs well
separated. In order to identify which constraint pairs are
not well satisfied, we introduce the kernel similarity matrix
K ∈ R

n×n, where Ki,j ≥ 0 indicates the confidence of as-
signing examples xi and xj to the same cluster. When all
the constraints are satisifed, we expect to observe a large
value for kernel similarity Ki,j if xi and xj form a must-link
pair, and a small value for Ki,j if xi and xj form a cannot-
link pair. Hence, we propose the following objective function
to measure the inconsistency between the kernel matrix K
and the given pairwise constraints:

L =

n
∑

i,j=1

n
∑

a,b=1

S+

i,jS
−
a,b exp(Ka,b − Ki,j) (1)

In the above, each term within the summation compares
Ka,b, i.e., the similarity between two points from a cannot-
link pair, to Ki,j , i.e., the similarity between two data points
from a must-link pair. By minimizing the objective function

Input
• X: d × n matrix for the input data
• A: the given clustering algorithm
• s: the number of principal eigenvectors used for

projection
• S+: matrix for must-link pairs
• S−: matrix for cannot-link pairs

Output: cluster memberships
Algorithm

• Initialize Ki,j = 0 for any i, j = 1, 2, . . . , n.
• For t = 1, 2, . . . , T

– Compute pi,j and qi,j using (5) and (6).
– Compute matrix T using (10).
– Compute the top s eigenvectors and eigenval-

ues {(λi,vi)}s
i=1 of T .

– Construct the projection matrix P using (11),
and generate the new data representation X ′

by projecting the input data X onto P .
– Run the clustering algorithm A using the new

data representation X ′. Compute the matrix
∆ with ∆i,j = 1 when xi and xj are grouped
into the same cluster by A, and zero otherwise.

– Compute α using (13).
– Update the kernel similarity matrix K as

K + α∆ → K
• Run the clustering algorithm A with the kernel ma-

trix K (if A does not take a kernel similarity matrix
as input, a data representation can be generated by
the first s + 1 eigenvectors of the matrix K).

Figure 2: Boosting algorithm

in (1), we will ensure that all the data points in the must-link
pairs are more similar to each other than the data points in
the cannot-link pairs.

The objective function in (1) can also be written as:

L =

(

n
∑

i,j=1

S+

i,j exp(−Ki,j)

)





n
∑

a,b=1

S−
a,b exp(Ka,b)



 (2)

The above objective function is a product of two terms: the
first term, i.e.,

∑n

i,j=1
S+

i,j exp(−Ki,j), measures the incon-
sistency between the kernel similarity matrix K and the
must-link constraints; the second term, i.e.,

∑n

a,b=1
S−

a,b exp(Ka,b),
measures the inconsistency between the kernel similarity
matrix K and the cannot-link constraints. Thus, by min-
imizing the product of the two terms, we enforce the ker-
nel matrix K to be consistent with the given pairwise con-
straints.

3.2 The BoostCluster Framework
The overall idea is to improve the clustering results iter-

atively. In each iteration, we will first identify a new data
representation by minimizing the discrepancy between the
kernel matrix K and the pairwise constraints. The new data
representation will then be used by the clustering algorithm
A to obtain the new clustering results, and the new results
will be used in return to update the kernel matrix K. It is
important to note that the data representation is generated
based on the clustering results. This is where the proposed
approach differs from the previous studies, i.e., the proposed
algorithm is capable of taking into account the performance



of the clustering algorithm to be boosted while the others
do not.

To boost the performance of a clustering algorithm A
given a set of pairwise constraints, we follow the idea of
boosting algorithms by iteratively improving the kernel sim-
ilarity matrix K. Let K denote the current kernel similarity
matrix. Let ∆ ∈ {0, 1}n×n denote the incremental kernel
similarity matrix that is inferred from the clustering results
generated by the algorithm A. In particular, ∆i,j = 1 when
both xi and xj are assigned to the same cluster and ∆i,j = 0
otherwise. The new kernel matrix K′ is a linear combination
of K and ∆, i.e.,

K′ = K + α∆ (3)

where α ≥ 0 is the combination weight. Then, the objec-
tive function L for the new kernel K′, denoted by L(K′), is
written as:

L(K′) =
n
∑

i,j=1

n
∑

a,b=1

S+

i,jS
−
a,b exp(K′

a,b − K′
i,j)

=
n
∑

i,j=1

n
∑

a,b=1

pi,jqa,b exp(−α(∆i,j − ∆a,b)) (4)

where

pi,j = S+

i,j exp(−Ki,j) (5)

qa,b = S−
a,b exp(Ka,b) (6)

In the above, pi,j measures the inconsistency between the
kernel matrix K and the must-link pair (xi,xj), and qa,b

measures the inconsistency between K and the cannot-link
pair (xa,xb).

Using Jensen’s inequality, an upper bound for the term
exp(−α(∆i,j − ∆a,b)) can be constructed as follows

exp(−α(∆i,j − ∆a,b)) (7)

= exp

(

−3α
∆i,j − ∆a,b + 1

3
+ 3α

1

3
+ 0 × ∆a,b − ∆i,j + 1

3

)

≤ ∆i,j − ∆a,b + 1

3
exp(−3α) +

1

3
exp(3α) +

∆a,b − ∆i,j + 1

3

In the first step of the above derivation, we rewrite α(∆i,j −
∆a,b) as a summation over the probability distribution of
((∆a,b−∆i,j+1)/3, (∆i,j−∆a,b+1)/3, 1/3). Using the upper
bound in (7), we can now bound the objective function in (4)
as follows

L(K′) =
n
∑

i,j=1

n
∑

a,b=1

pi,jqa,b exp(−α(∆i,j − ∆a,b))

≤ exp(3α) − 1

3

n
∑

i,j=1

∆i,j



pi,j

n
∑

a,b=1

qa,b − qi,j

n
∑

a,b=1

pa,b





+
exp(3α) + exp(−3α) + 1

3

n
∑

i,j=1

n
∑

a,b

pi,jqa,b (8)

We can simplify the above expression by defining a matrix
T as follows

Ti,j =
pi,j

∑n

a,b=1
pa,b

− qi,j
∑n

a,b=1
qa,b

The elements in matrix T measure the inconsistency be-
tween kernel matrix K and the pairwise constraints. Only

the pairwise constraints that are not well satisfied will re-
sulted in large |Ti,j |: a large positive value for Ti,j indicates
that K is inconsistent with the must-link pair (xi,xj), while
a large negative value for Ta,b indicates that K is inconsis-
tent with the cannot-link pair (xa,xb). Here, the matrix T
plays a similar role as the example weights w of the Ad-
aBoost algorithm, in which w is used to identify the exam-
ples that are difficult to classify correctly.

Using the notation of matrix T , the upper bound for L
in (8) becomes

L(K′) ≤ L(K) ×
(

[exp(3α) + exp(−3α) + 1]/3
−[1 − exp(−3α)]tr(T∆>)/3

)

(9)

where

L(K) =

n
∑

i,j=1

n
∑

a,b=1

pi,jqa,b , tr(T∆>) =

n
∑

i,j=1

Ti,j∆i,j

Note that when α = 0, the right side of (9) becomes L(K),
i.e., the objective function of the previous iteration. Thus,
by minimizing the upper bound in (9) with respect to α, we
are guaranteed to have L(K′) ≤ L(K), thus reducing the
objective function at successive iterations.

As suggested by the inequality in (9), to effectively reduce
the objective function L, we need to maximize the term
tr(T∆>). To obtain the new data representation, we assume
that the incremental kernel matrix ∆ can be approximated
by a linear projection of the input data X, i.e.,

∆ ≈ (P>X)>(P>X) = X>PP>X

where P = (p1,p2, . . . ,ps) is the projection matrix (s ≤ d)
with each pi ∈ R

d specifying a different projection direction.
Using the above expression, tr(T∆>) can be written as

tr(T∆>) ≈ tr(P>XTX>P ) (10)

By further assuming orthogonality between any two projec-
tion vectors, i.e., p>

i pj = δ(i, j), we have the optimal solu-
tion for pi that maximizes the expression in (10) as the ith
maximum eigenvector of matrix XTX>. Let {(λi,vi)}s

i=1

denote the top s principal eigenvalues and eigenvectors of
matrix XTX>. Then, the optimal projection matrix P is
constructed as

P = (
√

λ1v1,
√

λ2v2, . . . ,
√

λsvs) (11)

Intuitively, since the matrix T encodes the discrepancy
between the current kernel K and the constraints, the pro-
jection matrix P , which is generated from the input pat-
terns X and the discrepancy-encoded matrix T , will result
in a subspace that best preserves the information from the
constraints yet to be satisfied.

Using the projection computed in (11), we generate a new
data representation as X ′ = P>X. This new representation
X ′ will be input to the clustering algorithm A to gener-
ate new cluster memberships. The resulting cluster mem-
berships are then used to compute the incremental kernel
matrix ∆.

In addition to the projection matrix P , another important
question is how to compute the optimal α. We can estimate
the optimal α by minimizing the upper bound in (9), which
leads to α = log[1 + tr(T∆>)]/6. However, we can further
improve the estimation of α by minimizing the original ob-
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jective function in (2), which is

L(K′) =

(

n
∑

i,j=1

S+

i,j exp(−K′
i,j)

)(

n
∑

i,j=1

S−
i,j exp(K′

i,j)

)

=

(

n
∑

i,j=1

pi,jδ(∆i,j , 0) +
n
∑

i,j=1

pi,jδ(∆i,j , 1) exp(−α)

)

×

(

n
∑

i,j=1

qi,jδ(∆i,j , 0) +
n
∑

i,j=1

qi,jδ(∆i,j , 1) exp(α)

)

(12)

It is not difficult to show that the optimal α that maximizes
the above expression is:

α =
1

2
log

(
∑n

i,j=1
pi,jδ(∆i,j , 1)

∑n

i,j=1
pi,jδ(∆i,j , 0)

×
∑n

i,j=1
qi,jδ(∆i,j , 0)

∑n

i,j=1
qi,jδ(∆i,j , 1)

)

(13)

Figure 2 summarizes the proposed boosting algorithm.

3.3 Convergence
Similar to most boosting algorithms, we can show that

the objective function (1) is reduced exponentially with suc-
cessive iterations of the proposed boosting algorithm. This
conclusion can be summarized into the following theorem.

Theorem 1. Let ∆1, ∆2, . . . , ∆T be the incremental ker-
nel matrices computed from the clustering results by running
the boosting algorithm (in Figure 2). Then, the objective
function after T iterations, i.e., LT , is bounded as follows:

LT ≤
(

n
∑

i,j=1

S+

i,j

)(

n
∑

i,j=1

S−
i,j

)

T
∏

t=1

(1 − γt), (14)

where

γt =
(
√

AtDt −
√

BtCt)
2

(At + Bt)(Ct + Dt)

At, Bt, Ct, and Dt are non-negative constants, and are com-
puted as

At =
n
∑

i,j=1

pt
i,jδ(∆

t
i,j , 0), Bt =

n
∑

i,j=1

pt
i,jδ(∆

t
i,j , 1)

Ct =
n
∑

i,j=1

qt
i,jδ(∆

t
i,j , 0), Dt =

n
∑

i,j=1

qt
i,jδ(∆

t
i,j , 1)

where pt
i,j and qt

i,j are computed according to (5) and (6)
using the kernel matrix K at the t-th iteration.

The above theorem can be proved directly by using the
expression in (12) and the expression for α in (13). Due
to space constraints, we cannot provide details. Figure 3
shows how the logarithm of the objective function used by
the proposed algorithm changes with respect to the number
of iterations; the objective function converges very fast, and
becomes flat after 22 iterations. In our experiments, the
boosting algorithm usually converges within 25 iterations.

3.4 Computational Issues
In the proposed boosting algorithm, a key step towards

finding a good projection matrix P is eigen-decomposition
of XTX>, as shown in (10) and (11). To efficiently compute
XTX>, we first note that XTX> can also be written as:

XTX> =
n
∑

i,j=1

Ti,jxix
>
j (15)

Since Ti,j is nonzero only when the example pair (xi,xj) cor-
responds to a given constraint, the above calculation only
involves a very small portion of all possible example pairs.
Hence, the computational cost for XTX> is only propor-
tional to the number of pairwise constraints. Therefore,
XTX> can be calculated efficiently as long as the number
of labeled pairs is relatively small.

In addition to XTX>, another major computational cost
arises from calculating the principal eigenvectors and eigen-
values of XTX>, particularly when the dimensionality of
the feature space is high. For instance, for text data clus-
tering, each document is typically represented by a vector
of over 100, 000 features, and the size of matrix XTX> is
over 100, 000 × 100, 000. A straightforward approach is to
reduce the dimensionality before running the proposed algo-
rithm. However, most dimensionality reduction algorithms
that are capable of handling high dimensional space are un-
supervised, and therefore are unable to exploit the pairwise
constraints. Here, we propose an algorithm that is able to ef-
ficiently compute the eigenvectors of XTX> when the input
dimensionality is high. We first realize that each eigenvector
of XTX> has to lie in the space that is spanned by the ex-
amples used by the constraints. More specifically, we denote
by X̃ = (x̃1, x̃2, . . . , x̃m) the subset of m examples that are
involved in the constraints. Then, the eigenvector vi can be
written as a linear combination of {x̃i}m

i=1, i.e.,

vi =

m
∑

k=1

wi,kx̃k = X̃wi (16)

More generally, we have

V = (v1,v2 . . . ,vs) = X̃(w1,w2, . . . ,ws) = X̃W.

The proof of this result can be found in Appendix A. We
furthermore denote by T̃ the pairwise constraints, where T̃i,j

denotes the pairwise constraint between x̃i and x̃j . Then,
wi, i = 1, 2, . . . , s correspond to the first s principal eigen-
vectors of the following generalized eigenvector problem

X̃>X̃T̃ X̃>X̃wi = λiX̃
>X̃wi (17)

Note that since X̃>X̃T̃ X̃>X̃ and X̃>X̃ are m×m matrices,
the cost of computing the eigenvectors is independent of the
dimensionality of the input space. The proof of the above
result can be found in Appendix B.



Name #Attributes #Clusters #Examples
wdbc 30 2 569
scale 4 3 625
vowel 10 11 990

segmentation 19 7 2310
handwrittendigit 256 10 4000

pendigit 16 4 4396

Table 1: Datasets used in the experiments.

4. EXPERIMENTS
We now present an empirical evaluation of our proposed

boosting framework. In particular, we aim to address the
following three questions in our study:

1. As a general boosting framework, is the proposed method
able to improve the performance for any given cluster-
ing algorithm?

2. How effective is the proposed boosting framework com-
pared to other semi-supervised clustering algorithms?

3. How robust is the proposed boosting framework in im-
proving the clustering performance by using the pair-
wise constraints?

4.1 Experiment Setup
To validate the claim that the proposed boosting algo-

rithm is capable of improving any clustering algorithm by
exploiting the pairwise constraints, three popular clustering
algorithms are used in our study. They are:

1. K-means algorithm [1]. It represents the family of clus-
tering algorithms that try to find compact and well-
separated clusters. We adopted the implementation
from the Weka software1.

2. Partitional SingleLink algorithm (“SLINK” for short) [16].
It represents the family of the hierarchical clustering
algorithms. We adopted the implementation from the
CLUTO software2

3. k-way spectral clustering (“SPEC” for short). It rep-
resents the family of spectral methods for data clus-
tering. In particular, we follow the algorithm in [24]
for the implementation of spectral clustering.

Six datasets drawn from the UCI machine learning repos-
itory [9] are used in our study. Table 1 summarizes the
information about these datasets3. As indicated in Table 1,
these datasets vary significantly in their sizes, number of
clusters, and number of attributes.

To evaluate the clustering performance, two measurements
are used in our experiments. The first measurement is nor-
malized mutual information (NMI for short) [4], which is
defined as

NMI =
2MI(X, X0)

H(X) + H(X0)

1http://www.cs.waikato.ac.nz/ml/weka/
2http://glaros.dtc.umn.edu/gkhome/views/cluto
3Note that for the “pendigit” dataset, examples in only four
classes of letter “3”, “6”, “8” and “9” are selected from a
total of 10 classes because these four letters are in general
most difficult to distinguish.

BoostCluster + K−means

BoostCluster + SLINK

BoostCluster + SPEC

MCPKmeans

SSKK

SpectralLearn + K−means     .

SpectralLearn + SLINK

SpectralLearn + SPEC

Figure 4: Legends for all algorithms in our compar-
ative study. These legends will be used in all the
figures in this paper.

where X0 and X denote the random variables of cluster
memberships from the ground truth and the output of clus-
tering algorithm, respectively. MI(x, y) represents the mu-
tual information between random variables x and y, and
H(x) represents the Shannon entropy of random variable x.
The second measurement is Pairwise F -measure (PWF1
for short), which is the harmonic mean of pairwise precision
and recall that are defined as follows

precision =
#pairs correctly placed in the same cluster

Total #pairs placed in the same cluster

recall =
#pairs correctly placed in the same cluster

Total #pairs actually in the same cluster

PWF1 =
2 × precision × recall

precision + recall

The PWF1 measurement defined above is closely related to
the metric defined in [29] that measures the percentage of
data pairs correctly clustered together. The key problem
with the metric defined in [29] is that it counts two types
of data pairs, i.e., pairs of data points assigned to the same
cluster and pairs of data points assigned to different clusters,
with equal importance. This is problematic because most of
the data pairs in practice will consist of data points from
different clusters when the number of clusters is large. A
similar issue arises in multi-class learning, and that is why
F -measure is widely used for evaluating multi-class learn-
ing [31].

To verify the efficacy of the proposed boosting framework
in exploiting the pairwise constraints for data clustering,
three baseline approaches are used:

1. Metric Pairwise Constraints K-means (MPCKmeans
for short) algorithm [2,4], which is a probabilistic frame-
work based on Hidden Markov Random Fields.

2. Semi-supervised Kernel K-means (SSKK for short)
algorithm [19], which exploits the pairwise constraints
by a kernel approach and finds clusters with nonlinear
boundaries in the input data space.

3. Spectral Learning (SpectralLearn for short) algorithm
[17], which applies spectral methods to learn a data
representation from the pairwise constraints. The gen-
erated data representation can therefore be used by
any clustering algorithm to identify the appropriate
data clusters. The key difference between spectral
learning and our algorithm is that our algorithm gener-
ates algorithm specific data representations by taking
into account the performance of clustering algorithms.
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Figure 5: Comparison of clustering performance evaluated by NMI.
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Figure 6: Comparison of clustering performance evaluated by PWF1.



Previous studies [2, 4, 17, 19] showed that the above three
algorithms deliver the state-of-the-art performance in com-
parison to other semi-supervised clustering algorithms such
as the constrained K-means.

In summary, we will compare the following semi-supervised
clustering algorithms in the experiments: the three cluster-
ing algorithms (K-means, SLINK, and SPEC) being boosted
by the proposed BoostCluster framework; the same three
clustering algorithms with input from the Spectral Learn-
ing algorithm; the MPCKmeans algorithm; and the SSKK
algorithm. For easy identification in figures, we listed the
legends for the above algorithms to be compared, in Fig-
ure 4. These legends apply to all following performance
comparison figures (we will omit showing legends in those
figures due to space constraints).

Finally, in all the experiments, we vary the number of
pairwise constraints from 0 to 800. Since a random sam-
pling of data pairs tends to find many more cannot-link pairs
than the must-link pairs, in this study, we enforce an equal
number of constraints for both must-link pairs and cannot-
link pairs. The numbers of eigenvectors (i.e., the parameter
s in the boosting algorithm shown in Figure 2) are deter-
mined empirically as follows: 3 for the “scale” dataset, 10
for the “handwrittendigit” dataset and 5 for the remaining
4 datasets. All the experiments in this study are repeated
five times, and the evaluation results averaged over the five
trials are reported.

4.2 Generality of the Boosting Framework
Figures 5 and 6 show the clustering performance, eval-

uated by NMI and PWF1 respectively, of the BoostClus-
ter framework using the three clustering algorithms (i.e.,
K-means, partitional SingleLink, and spectral clustering),
the same three clustering algorithms with input as the new
data representation from the Spectral Learning algorithm,
the MPCKmeans algorithm, and the SSKK algorithm.

1. We observe that for most datasets, the BoostCluster
framework is able to improve the clustering perfor-
mance for all the three clustering algorithms regard-
less of which evaluation metric is used. This suggests
that the proposed framework is effective in exploiting
the pairwise constraints to improve clustering perfor-
mance. MPCKmeans algorithm and SSKK algorithm
are also effective in general, however, their clustering
performance improvements are less significant, espe-
cially for larger datasets (such as “handwrittendigit”
and “pendigit”).

2. Although SpectralLearn algorithm can also be com-
bined with any clustering algorithm, in our experi-
ments, it does not always improve the clustering al-
gorithm performance. For example, for “wdbc” and
“handwrittendigit”, increasing the number of pairwise
constraints deteriorates clustering performance by com-
bining SpectralLearn with any of the three clustering
algorithms. Moreover, the effect of SpectralLearning
depends on the clustering algorithm. For example, for
the “pendigit” dataset, SpectralLearn improves the
clustering performance of K-means and SLINK, but
degrades SPEC in general. In comparison, the clus-
tering performance improvement brought by the pro-
posed BoostCluster is substantially more stable and
consistent, across different datasets and different clus-

tering algorithms. This can be attributed to the fact
that BoostCluster is adaptive to both clustering al-
gorithms and datasets: in each iteration, it takes the
feedback from the result of applying the given cluster-
ing algorithm to the particular dataset, and decides
how to adjust the kernel matrix. However, Spectral-
Learn generates new data representations independent
from the clustering algorithm that is used.

3. The performance of the three clustering algorithms (K-
means, SLINK, and SPEC) varies significantly across
the six different datasets. For instance, for the “vowel”
dataset, “BoostCluster+K-means” algorithm performs
considerably worse than “BoostCluster+SPEC” algo-
rithm. However, the performance of “BoostCluster+K-
means” algorithm for the “pendigit” dataset, is sig-
nificantly better than that of “BoostCluster+SPEC”
algorithm. This result also indicates that every clus-
tering algorithm has its own strength, and therefore
it is important to develop a general framework that is
able to boost the performance of any clustering algo-
rithm by the given pairwise constraints.

4. The results based on the two different evaluation met-
rics, namely NMI and PWF1, are inconsistent on some
occasions. For instance, for the “handwrittingdigit”
dataset, according to NMI, the clustering performance
of “BoostCluster+K-means” and “BoostCluster+SLINK”
appears to be similar. However, according to PWF1,
“BoostCluster+SLINK” performs noticeably better than
“BoostCluster+K-means”. The implication of this find-
ing is the importance of evaluating clustering perfor-
mance by more than one evaluation metric, since con-
clusions based on the results of a single evaluation met-
ric could be biased.

4.3 Robustness of Exploiting Pairwise
Constraints

Although the curves in Figures 5 and 6 all display dif-
ferent degrees of “bumpiness”, generally speaking, Boost-
Cluster framework, SSKK and MPCKmeans deliver a more
robust performance than SpectralLearn algorithm. On the
other hand, although for most datasets, the performance
curves of SSKK appear to be the most smooth among all
the competitors, the resultant improvement is almost always
the least noticeable among all the semi-supervised clustering
algorithms.

To further evaluate the robustness of all the algorithms,
we conduct experiments with noisy pairwise constraints. We
randomly select 20% of the pairwise constraints and flip
their labels (i.e., a must-link pair becomes a cannot-link pair
and vice versa). This setting reflects the scenario when the
side information includes incorrect pairwise constraints. It
could happen when for instance, the pairwise constraints
are derived from the implicit user feedback (e.g., user rat-
ings or click-through data). Thus, it is important to develop
semi-supervised clustering algorithms that are resilient to
the noisy side information.

Figure 7 shows the performance of all the algorithms, on
three selected datasets (i.e., “scale”, “vowel”, and “pendigit”)
when 20% of the pairwise constraints are noisy 4. First, by
comparing Figures 7 with Figures 5 and 6, it is not sur-

4Due to space constraints, we are unable to show the results
for all the six datasets.
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Figure 7: Comparison of clustering performance with 20% noise in the pairwise constraints. Graphs in the
top row show the NMI measurements, and graphs in the lower row show the PWF1 measurements.

prising to observe a degradation in clustering performance
when 20% of the pairwise constraints are noisy. Second,
we observe a general trend that a larger number of noisy
constraints tend to result in an inferior clustering perfor-
mance by MPCKmeans. This is in contrast to the results of
MPCKmeans shown in Figures 5 and 6 where increasing the
number of pairwise constraints usually improves the perfor-
mance of clustering. This result implies that the MPCK-
means algorithm is unable to effectively exploit the pair-
wise constraints for data clustering when they are noisy.
Similarly, while “SpectralLearn+K-means” and “Spectral-
Learn+SLINK” are able to noticeably improve the cluster-
ing performance with increasing number of noise-free pair-
wise constraints, with 20% noise in the constraints, their
performance degrades with the increasing number of con-
straints. In comparison, as shown in Figure 7, BoostCluster
framework is generally able to improve the performance of
all the three clustering algorithms with increasing number
of noisy pairwise constraints, and SSKK algorithm is also
able to improve clustering performance despite the noise
in pairwise constraints. This indicates that the proposed
BoostCluster framework and the SSKK algorithm are more
resilient to the noise in the side information.

5. CONCLUSIONS
In this paper, we have studied the problem of improv-

ing data clustering by using side information in the form
of pairwise constraints. A general boosting framework has
been proposed to improve the accuracy of any given cluster-
ing algorithm with a given set of pairwise constraints. Such
performance improvement is achieved by iteratively finding
new data representations that are consistent with both the
clustering results from previous iterations and the pairwise

constraints. Empirical study shows that our proposed boost-
ing framework is able to improve the clustering performance
of several popular clustering algorithms by using the pair-
wise constraints.
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APPENDIX

A. PROOF 1
We show that every non-zero eigenvector vi can be writ-

ten as a linear combination of x̃i, i = 1, 2, . . . , m, i.e., the
examples involved in the pairwise constraints. Let v and
λ 6= 0 be an eigenvector and eigenvalue of matrix XTX>.
We therefore have XTX>v = λv. We further decompose
v into two parts: v = v‖ + v⊥, where v‖ represents the
projection of v in the subspace spanned by {x̃i}s

i=1, and x⊥

represents the projection perpendicular to {x̃i}s
i=1. To show

that v can be written as a linear combination of {x̃i}s
i=1, we

need to show v⊥ = 0. To this end, we first utilize the ex-
pression in (15) to calculate (v⊥)>XTX>, i.e.,

(v⊥)>XTX> =

m
∑

i,j=1

T̃i,j(v⊥)>x̃ix̃
>
j = 0>

We then multiply the eigen equation XTX>v = λv by
(v⊥)>, which leads to the following equation

(v⊥)>XTX>v = 0 = λ(v⊥)>v = λ‖v⊥‖2
2

Since λ 6= 0, we have v⊥ = 0 and v = v‖.

B. PROOF 2
We will show that for the ith eigenvector vi = X̃wi

of X̃T̃ X̃>, wi corresponds to the ith eigenvector of the
generalized eigenvector problem in (17). First, we realize
that the orthogonality condition v>

i vj = δ(i, j) becomes

w>
i X̃X̃>wj = δi,j . We can write the above condition for all

wi, i = 1, 2, . . . , s in the matrix form, i.e., W>X̃X̃>W = Is.
Second, the eigenvectors V = (v1,v2, . . . ,vs) are the opti-
mal solution to the following optimization problem, i.e.,

arg max
V ∈Rd×s

tr(V >XTX>V )

s. t. V >V = Is

Replacing V in the above optimization problem with V =
X̃W , we have

max
W∈Rm×s

tr(W>X̃>X̃T̃ X̃>X̃W )

s. t. W>X̃>X̃W = Is

It is well known that the optimal solution W to the above
problem consists of the first s eigenvectors of the generalized
eigenvector problem in (17).


