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Abstract

Semi-supervised clustering allows a user to specify

available prior knowledge about the data to improve

the clustering performance. A common way to express

this information is in the form of pair-wise constraints.

A number of studies have shown that, in general, these

constraints improve the resulting data partition. How-

ever, the choice of constraints is critical since improp-

erly chosen constraints might actually degrade the clus-

tering performance. We focus on constraint (also known

as query) selection for improving the performance of

semi-supervised clustering algorithms. We present an

active query selection mechanism, where the queries

are selected using a min-max criterion. Experimental

results on a variety of datasets, using MPCK-means as

the underlying semi-clustering algorithm, demonstrate

the superior performance of the proposed query selec-

tion procedure.

1 Introduction

The goal of clustering or unsupervised learning is to

partition n objects represented as points in d dimen-

sions. It is well-known that this problem is very dif-

ficult and considered to be ill-posed [7]. Any additional

user-specified information should help in guiding the

clustering algorithm towards a better solution. Semi-

supervised clustering allows incorporation of “side-

information” into the clustering algorithm, which is

usually specified as constraints1 of the form: should the

u-th and the v-th objects in the data be put in the same

cluster? The answer to this query can either be “yes” (a

must-link query) or “no” (a must-not link query). Fig. 1

shows how introducing 100 randomly selected pairwise

1The constraints are referred to as the queries in active learning

terminology.
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constraints improves the performance (Fig. 1(c)) of K-

means clustering (Fig. 1(b)). Semi-supervised cluster-

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
True Labels

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
No Constraints  0.61365

(a) True Labels (b) F1 = 0.56

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Random Constraints  0.67165

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Random Constraints  0.51218

(c) F1 = 0.67 (d) F1 = 0.51

Figure 1. Illustration of constraint-based
clustering. (a) 2-D projection of the Diff-

300 dataset [2] using PCA, with true la-

bels (b) K-means Clustering (K = 3) with-
out any constraints, (c) & (d) two different

clusterings with 100 pairwise constraints
selected randomly. F1 statistic [1] indi-

cates the clustering quality.

ing algorithms focus on how to utilize the constraints

effectively to infer the cluster labels. However, the con-

straints may not be always available a priori, but an or-

acle (user) may be available to provide the constraints,

as needed by the algorithm. This scenario, where the

system queries the oracle to obtain information relevant

to learning is called active learning [5]. In an active

learning framework, one aims to obtain a better parti-

tion of the data with minimal number of queries. David-

son et al. [4] and Wagstaff [10] show that when queries

are not selected properly, the semi-supervised learning
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Figure 2. Active query selection.

degrades the clustering performance. Fig. 1(d) shows

an example where the addition of 100 randomly cho-

sen constraints actually degrades the performance ofK-

means (Fig. 1(b)). Thus, query selection is an important

problem in semi-supervised clustering.

An active query selection algorithm using the

“farthest-first” strategy, was proposed by Basu et al. [1].

We refer to this algorithm as the Farthest First Query

Selection (FFQS) algorithm. The FFQS algorithm has

two phases: Explore and Consolidate. The

Explore phase selects must-not link constraints such

that they result in at least one seed point per cluster. We

call this set of points as skeleton of the clusters. A pref-

erence to must-not link queries is given by selecting the

farthest point from the existing skeleton. The Explore

phase continues untilK points are found such that there

is a must-not link query between any pair from the K
points, which is then followed by the Consolidate

phase. The Consolidate phase randomly selects the

points not included in the skeleton (non-skeletal points),

and queries them against each point in the skeleton, un-

til a must-link query is obtained.

In this paper, we propose an algorithm for active

query selection based on the min-max criterion, which

significantly improves the Consolidate phase of

the FFQS algorithm. The block diagram of the pro-

posed approach is shown in Fig. 1. Given any semi-

supervised clustering algorithm, the proposed query se-

lection scheme utilizes the pairwise similarity to de-

termine an optimal set of queries. The cluster la-

bels obtained at each iteration of active query selec-

tion may also be used in selecting the queries. Us-

ing the well known MPCK-means (Metric Pairwise

Constrained K-means) semi-supervised learning algo-

rithm [3], we show that the proposed approach is better

than random query selection and the FFQS algorithm.

2 Min-max strategy for query selection

Let X = {xi}
n
i=1

denote n objects to be clustered

into K clusters. Let S = [sij ] be the n × n real sym-

metric similarity matrix, where sij ≥ 0 denotes the sim-

ilarity between xi and xj . We adopt the general frame-

work of Explore-Consolidate from the FFQS al-

gorithm. Given the identified skeleton points, the key

question that we address is how to actively identify

• For all xi ∈ (X −Xs), compute their largest simi-

larities to skeleton using Eq (1).

• Select q, the most uncertain xi according to the

min-max criterion in Eq (2).

• Select one representative point per cluster uk, k =
1, · · · , K , in the skeleton such that uk is closest to

q in cluster k.
• Sortuk, k = 1, · · · , K in descending order of sim-

ilarities to q.

• For each uk

– Seek answer to the query (q, uk).
– If the query is must-link, go to step 1. Other-

wise, continue to next uk.

• Update the skeleton by including q in it.

Figure 3. The proposed min-max algo-

rithm for query selection.

query points during the consolidate phase? Using the

Explore algorithm [1], we first find a set of points

Xs ⊂ X such that it contains at least one point from

each of the K clusters. We refer to Xs as the skeleton

of the data clusters.

We assume that similarity measurement can be used

to estimate the probability of two points to be in the

same cluster. Hence, analogous to the nearest-neighbor

method, the cluster label for a given data point xi is de-

cided mainly by the cluster label of the closest skeleton

point. Let P (Xs,xi) denote the largest similarity of the

non-skeletal point xi to points in the skeleton Xs. Then

we have

P (Xs,xi) = max
xj∈Xs

sij . (1)

In our experiments, we define sij as the Gaussian Ker-

nel, i.e., sij = exp(−||xi − xj ||
2/2σ2), where σ is the

kernel width parameter.

For each data point, its largest similarity to the skele-

ton points can be used to measure the uncertainty in de-

ciding the cluster membership. In particular, the uncer-

tainty is expected to be inversely related to the value

of P (Xs,xi), i.e., the larger the largest similarity of

xi to the skeleton, the smaller is the uncertainty in de-

ciding its cluster membership. Following the principle

of active learning [9], we choose the data point with

the largest uncertainty in deciding cluster membership,

which leads to the proposedmin-max approach, namely

selecting the data point whose largest similarity to the

skeleton points is the smallest. Hence, the most uncer-

tain point q can be chosen as

q = argmin
i

P (Xs,xi) = arg min
i

max
xj∈Xs

sij . (2)
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(a) True Labels (b) Kmeans (F1 = 0.69) (c) (t = 3, F1 = 0.64) (d) (t = 4,F1 = 0.88)
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(e) t = 6,F1 = 0.89) (d) t = 25,F1 = 0.93 0f) t = 38,F1 = 0.97) (g) t = 50,F1 = 1.00

Figure 4. Illustration of the proposed min-max query selection. (a) A 2-D Dataset with 75 sam-

ples generated from a mixture of 3 Gaussians. (b) K-means clustering, (c) skeleton from three

must-not link queries, (d) first must-link constraint increases the performance significantly, (e)
two must-link constraints obtained, (f) & (g) clustering with 25 and 38 constraints, (h) perfect

clustering with 50 constraints. Solid lines represent must-link queries and broken lines repre-

sent must-not link queries. F1 statistic denotes clustering quality and t indicates the number
of constraints.

The cluster membership of the selected point q is de-

termined by formulating pairwise queries of the form

(q,uk), where uk ∈ Xs, and uk belongs to cluster k,
k = 1, · · · , K , until a must-link query is obtained.

The skeleton found by the initial explore phase may

not be robust as it involves very few points from the

dataset. After soliciting the cluster membership of

query point q, we can add it to the existing skeleton,

i.e., Xs → Xs ∪ q The proposed algorithm using the

min-max approach is summarized in Figure 2.

In addition to the constraints generated above, we

can infer additional constraints using the transitive clo-

sure of the set of constraints [1]. Given three data points

u, v andw, let+(u, v) denote a must-link constraint be-

tween u and v, and −(u, v) denote a must-not link con-

straint. We now have, (i)+(u, v)∧+(v, w) ⇒ +(u, w),
(ii) +(u, v) ∧ −(v, w) ⇒ −(u, w), and (iii) for a two

cluster case, −(u, v) ∧ −(v, w) ⇒ +(u, w).

3 Experiments and Results

We present the performance of the proposed query

selection algorithm on six datasets, including three used

to evaluate FFQS in [1], 2 UCI datasets and one real

face dataset. The text datasets Sim-300 and Same-

300 datasets span around 3,000 dimensions, and Diff-

300 spans around 1,000 dimensions. However, since

there are only 300 samples per dataset, we followed the

commonly used practice of Latent Semantic Indexing

(LSI) [8] to reduce the dimension to 20. The iris dataset

has 150 samples in 4 dimensions. The Digits-389 [3]

dataset has 317 examples in 16 dimensions. The eth-

nicity dataset is a collection of real face images [6] with

2630 face images reduced using PCA to 30 dimensions.

The ethnicity dataset is a two class dataset, while the

rest of them have three classes. The results on several

other datasets that we tested are similar and we do not

present them here due to limited space.

We use the MPCK-means algorithm [3], the state of

the art scalable constraint based clustering algorithm, to

test the utility of the constraints selected. As in previ-

ous studies, we assume that the number of clusters is

known. We follow the experimental setup in [1] and

report the mean performance over 20 runs of 5-fold

cross validation for the first 100 queries. For each fold,

queries are selected only from four out of the five sub-

sets of the data. The clustering is performed on the com-

plete data, and the performance is evaluated using the

F1 measure [1] on the fifth fold that is not included in

the query selection. The kernel width parameter of the

Gaussian kernel is set to the 20th percentile of the dis-

tribution of pairwise Euclidean distances.

The performance of the three query selection algo-

rithms is summarized in Fig. 5, which plots the F1
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Figure 5. Performance of min-max (proposed), random and FFQS. Significant differences (mea-

sured using paired t-test at 95% confidence level) between the proposed and FFQS algorithms
are shown with filled markers.

measure of cluster validity against the number of con-

straints. The proposed query selection algorithm out-

performs the FFQS algorithm and random query selec-

tion on all the six datasets considered. Differences in

performance that are significant at 95% confidence us-

ing a paired t-test are plotted using filled markers. For

the Same-300 dataset, randomly selected queries per-

form better than any of the query selection methods for

small number (< 100) of constraints. This may be be-

cause, for small number of queries the initial Explore

phase may not be able to represent the cluster structure.

However, as the number of queries increases, the pro-

posed approach expands the skeleton and outperforms

both the FFQS and random queries.

4 Conclusion

We have presented an active query selection algo-

rithm for semi-supervised clustering, that generalizes

the method in [1]. An implementation based on a spe-

cial case of the min-max approach, using similarity be-

tween the pair of points as the confidence of must-link

constraint is developed. The results on the datasets

used in [1, 3] and UCI repository show improved per-

formance of the proposed algorithm compared to the

FFQS method and random query selection. The per-

formance of the proposed query selection algorithm is

as measured by the F1 statistic, in general, better than

the FFQS approach.
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