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Abstract. Most semi-supervised learning algorithms have been designed
for binary classification, and are extended to multi-class classification by
approaches such as one-against-the-rest. The main shortcoming of these
approaches is that they are unable to exploit the fact that each example
is only assigned to one class. Additional problems with extending semi-
supervised binary classifiers to multi-class problems include imbalanced
classification and different output scales of different binary classifiers.
We propose a semi-supervised boosting framework, termed Multi-Class
Semi-Supervised Boosting (MCSSB), that directly solves the semi-
supervised multi-class learning problem. Compared to the existing semi-
supervised boosting methods, the proposed framework is advantageous
in that it exploits both classification confidence and similarities among
examples when deciding the pseudo-labels for unlabeled examples. Em-
pirical study with a number of UCI datasets shows that the proposed
MCSSB algorithm performs better than the state-of-the-art boosting al-
gorithms for semi-supervised learning.

Key words: Semi-supervised learning, Multi-Class Classification, Boost-
ing

1 Introduction

Semi-supervised classification combines the hidden structural information in the
unlabeled examples with the explicit classification information of labeled exam-
ples to improve the classification performance. Many semi-supervised learning
algorithms have been studied in the literature. Examples are density based meth-
ods [1, 2], graph-based algorithms [3–6], and boosting techniques [7, 8]. Most of
these methods were originally designed for two class problems. However, many
real-world applications, such as speech recognition and object recognition, re-
quire multi-class categorization. To adopt a binary (semi-supervised) learning
algorithm to problems with more than two classes, the multi-class problems are
usually decomposed into a number of independent binary classification problems
using techniques such as one-versus-the-rest, one-versus-one, and error-correcting
output coding [9]. The main shortcoming with this approach is that the resulting
binary classification problems are independent binary class problems. As a result,
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it is unable to exploit the fact that each example can only be assigned to one
class. This issue was also pointed out in the study with multi-class boosting [10].
In addition, since every binary classifier is trained independently, their outputs
may be on different scales, making it difficult to compare them [11]. Though
calibration techniques [12] can be used to alleviate this problem in supervised
classification, it is rarely used in semi-supervised learning due to the small num-
ber of labeled training examples. Moreover, techniques like one-versus-the-rest,
where the examples of one class are considered against the examples of all the
other classes, could lead to the imbalanced classification problem. Although a
number of techniques have been proposed for supervised learning in multi-class
problems [13, 14, 10], they have not addressed semi-supervised multi-class learn-
ing problems, which is the focus of this study.
Boosting is a popular learning method because it provides a general frame-
work for improving the performance of any given learner by constructing an
ensemble of classifiers. Several boosting algorithms have been proposed for semi-
supervised learning [15, 7, 8]. They essentially operate like self-training where the
class labels of unlabeled examples are updated iteratively: a classifier trained
by a small number of labeled examples is initially used to predict the pseudo-
labels for unlabeled examples; a new classifier is then trained by both labeled
and pseudo-labeled examples; the processes of training classifiers and predicting
pseudo-labels are altered iteratively till stopping criterion is reached. The main
drawback with this approach is that it relies solely on the pseudo-labels pre-
dicted by the classifiers learned so far when generating new classifiers. Given the
possibility that pseudo-labels predicted in the first few steps of boosting could be
inaccurate, the resulting new classifiers may also be unreliable. This problem was
addressed in [8] by introduction of a local smoothness regularizer. However, since
all the existing semi-supervised boosting algorithms are designed for binary clas-
sification, they will still suffer from the aforementioned problems when applied
to multi-class problems. In this paper, we develop a semi-supervised boosting
framework, termed Multi-Class Semi-Supervised Boosting (MCSSB), that is de-
signed for multi-class semi-supervised learning problems. By directly solving a
multi-class problem, we avoid the problems that arise when converting a multi-
class classification problem into a number of binary ones. Moreover, unlike the
existing semi-supervised boosting methods that only assign pseudo-labels to the
unlabeled examples with high classification confidence, the proposed framework
decides the pseudo labels for unlabeled examples based on both the classification
confidence and the similarities among examples. It therefore effectively explores
both the manifold assumption and the clustering assumption for semi-supervised
learning. Empirical study with UCI datasets shows the proposed algorithm per-
forms better than the state-of-the-art algorithms for semi-supervised learning.

2 Related Work

Most semi-supervised learning algorithms can be classified into three categories:
graph-based, density-based, and boosting-based.
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Semi-supervised SVMs (S3V Ms) or Transductive SVMs (TSVMs) are the
semi-supervised extensions to Support Vector Machines (SVM). They are es-
sentially density-based methods and assume that decision boundaries should lie
in the sparse regions. Although finding an exact S3V M is NP-complete [16],
there are many approximate solutions for it [1, 17–19, 2]. Except for [19], these
methods are designed for binary semi-supervised learning. The main drawback
with [19] is its high computational cost due to the semi-definite programming
formulation.

Graph-based methods aim to predict class labels that are smooth on the
graph of unlabeled examples. These algorithms differ in how to define the smooth-
ness of class labels over a graph. Example graph-based semi-supervised learning
approaches include Mincut [3], Harmonic function [4], local and global consis-
tency [5], and manifold regularization [6]. Similar to density based methods,
most graph-based methods are mainly designed for binary classification.

Semi-supervised boosting methods such as SSMBoost [15] and Assemble [7]
are direct extensions of Adaboost [20]. In [8], a local smoothness regularizer
is introduced to improve the reliability of semi-supervised boosting. Unlike the
existing approaches for semi-supervised boosting that solve 2-class problems, our
study focuses on semi-supervised boosting for multi-class classification.

3 Multi-Class Semi-supervised Learning

3.1 Problem Definition

Let D = (x1, .., xN ) denote the collection of N examples. Assume that the first
Nl examples are labeled by y1, ..., yNl

, where yi = (y1
i , ..., ym

i ) ∈ {0,+1}m is a
binary vector and m is the number of classes. yk

i = +1 when xi is assigned to
the kth class, and yk

i = 0, otherwise. Since we are dealing with a multi-class
problem, we have

∑m
k=1 yk

i = 1, i.e., each example xi is only assigned to one
and only one class. We denote by ŷi = (ŷ1

i , . . . , ŷi
m) ∈ Rm the predicted class

labels (or confidence) for example xi, and by Ŷ = (ŷ>1 , . . . , ŷ>N )> the predicted
class labels for all the examples1. Let S = [Si,j ]N×N be the similarity matrix
where Si,j = Sj,i ≥ 0 is the similarity between xi and xj . For the convenience of
discussion, we set Si,i = 0 for any xi ∈ D, a convention that is commonly used
by many graph-based approaches. Our goal is to compute ŷi for the unlabeled
examples with the assistance of similarity matrix S and Y = (y>1 , . . . , y>Nl

)>.

3.2 Design of Objective Function

The goal of semi-supervised learning is to combine labeled and unlabeled exam-
ples to improve the classification performance. Therefore, we design an objective
function that consists of two terms: (a) Fu that measures the consistency between
the predicted class labels Ŷ of unlabeled examples and the similarity matrix S,

1 x> is the transpose of matrix(vector) x.
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and (b) Fl that measures the consistency between the predicted class labels Ŷ
and true labels Y . Below we discuss these two terms in detail.

Given two examples xi and xj , we first define the similarity Zu
i,j based on

their predicted class labels ŷi and ŷj :

Zu
i,j =

m∑

k=1

exp(ŷk
i )∑m

k′=1 exp(ŷk′
i )

exp(ŷk
j )∑m

k′=1 exp(ŷk′
j )

=
m∑

k=1

bk
i bk

j = b>i bj (1)

where bk
i = exp(ŷk

i )/(
∑m

k′=1 exp(ŷk′
i )) and bi = (b1

i , . . . , b
m
i ). Note that bk

i can
be interpreted as the probability of assigning xi to class k, and Zu

i,j , the cosine
similarity between bi and bj , can be interpreted as the probability of assigning
xi and xj to the same class. We emphasize it is important to use bk

i , instead
of exp(ŷk

i ), for computing Zu
i,j because normalization in bk

i allows us to enforce
the requirement that each example is assigned to a single class, a key feature of
multi-class learning.

Let Zu = [Zu
i,j ] be the similarity matrix based on the predicted labels. To

measure the inconsistency between this similarity and the similarity matrix S,
we define Fu as the distance between the matrices Zu and S using the Bregman
matrix divergence [21], i.e.,

Fu = ϕ(Zu)− ϕ(S)− tr((Zu − S)>∇ϕ(S)), (2)

where ϕ : RN×N → R is a convex matrix function. By choosing ϕ(X) =∑N
i,j=1 Xi,j(log Xi,j − 1) [21], Fu is written as 2

Fu =
N∑

i,j=Nl+1

(
Si,j log

Si,j

Zu
i,j

+ Zu
i,j − Si,j

)
(3)

By assuming that
∑N

i,j=1+Nl
Zu

i,j ≈
∑m

k=1 N2
k and log x ≈ x − 1, where Nk is

the number of examples assigned to class k, we simplify the above expression
as Fu ≈

∑N
i,j=Nl+1 S2

i,j/Z
u
i,j . Since S2

i,j could be viewed as a general similarity
measurement, we replace S2

i,j with Si,j and simplify Fu as

Fu ≈
N∑

i,j=Nl+1

Si,j

Zu
i,j

=
N∑

i,j=Nl+1

Si,j∑m
k=1 bk

i bk
j

(4)

Remark We did not use ϕ(X) =
∑N

i,j=1 X2
i,j [21], which will result in Fu =∑N

i,j=Nl+1(Z
u
i,j − Si,j)2. This is because the value of Zu

i,j and Si,j may be on
different scales.

Similarly, we define the similarity between a labeled example xi and an un-
labeled example xj based on their class assignments as follows

Zl
i,j =

m∑

k=1

yk
i bk

j , (5)

2 We can only consider the sub-matrices related to unlabeled examples when defining
Fu.
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and the inconsistency measure Fl between the labeled and unlabeled examples
as follows:

Fl =
Nl∑

i=1

N∑

j=Nl+1

Si,j

Zl
i,j

=
Nl∑

i=1

N∑

j=Nl+1

Si,j∑m
k=1 yk

i bk
j

(6)

Finally, we linearly combine Fl and Fu to form the objective function:

F = Fu + CFl (7)

where C weights the importance of Fl. It is set to 10, 000 in our experiments to
emphasize Fl

3. Given the objective function F in (7), our goal is to find solution
Ŷ that minimizes F .

3.3 Multi-Class Boosting Algorithm

In this section, we present a boosting algorithm to solve the optimization problem
in (7). Following the architecture of boosting model, we incrementally add weak
learners to obtain a better classification model. We denote by Hk

i the solution
that is obtained for ŷk

i so far, and by hk
i ∈ {0, 1} the prediction made by the

incremental weak classifier that needs to be learned. Then, our goal is to find
hk

i , i = Nl + 1, . . . , N, k = 1, . . . , m and a combination weight α such that the
new solution H̃k

i = Hk
i + αhk

i significantly reduces the objective function F in
Equation 7. For the convenience of discussion, we use symbol ˜ to denote the
quantities (e.g., F̃ ) associated with the new solution H̃.

The key challenge in optimizing F with respect to hk
i and α is that these two

quantities are coupled with each other and therefore the solution of one variable
depends on the solution of the other. Our strategy to solve the optimization
problem is to first upper bound F with a simple convex function in which the
optimal solution for hk

i can be obtained without knowing the solution to α. Given
the solution to hk

i , we then compute the optimal solution for α. Below we give
details for these two steps.

First, the following lemma allows us to decouple the interaction between α
and hk

i within Zu
i,j and Zl

i,j

Lemma 1.

1

Z̃u
i,j

≤ 1 + e6α + e−6α

3Zu
i,j

+
e6α − 1
3Zu

i,j

(
m∑

k=1

(bk
i − τk

i,j)h
k
i

)
(8)

1

Z̃l
i,j

≤ 1 + e6α + e−6α

3Zl
i,j

+
e6α − 1

6

m∑

k=1

hk
i φk

i,j (9)

where

τk
i,j =

bk
i bk

j∑m
k′=1 bk′

i bk′
j

, φk
i,j =

m∑

k′=1

yk
j

bk
i

bk′
i

− yk
i

bk
i

(10)

3 The algorithm is quite stable with different values of C bigger than 1000 according
to our experiment.



6 Hamed Valizadegan et al.

The proof of Lemma 1 can be found in Appendix A. Using Lemma 1, we derive
an upper bound for F̃ in the following theorem.

Theorem 1

F̃ ≤ F
1 + exp(6α) + exp(−6α)

3
+

exp(6α)− 1
3

N∑

i=Nl+1

m∑

k=1

hk
i (αk

i + Cβk
i ) (11)

where αk
i and βk

i are defined as follows:

αk
i =

N∑

j=Nl+1

Si,j(bk
i − τk

i,j)
Zu

i,j

, βk
i =

1
2

Nl∑

j=1

Si,jφ
k
i,j (12)

Theorem 1 can be directly verified by replacing 1/Z̃u
i,j and 1/Z̃l

i,j in (7) with (8)
and (9). Note that the bound in Theorem 1 is tight because by setting α = 0,
we have H̃ = H and the inequality in Equation 11 is reduced to an equality.
The key feature of the bound in Equation 11 is that the optimal solution for hk

i

can be obtained without knowing the solution for α. This is summarized by the
following theorem.

Theorem 2 The optimal solution for hk
i that minimizes the upper bound of F̃

in Equation 11 is

hk
i =

{
1 k = arg maxk′(αk′

i + Cβk′
i )

0 otherwise
(13)

It is straightforward to verify the result in Theorem 2.
We then proceed to find solution for α given the solution for hk

i . The following
lemma provides a tighter bound for solving α in F 4.

Lemma 2.

F̃ − F ≤ (e2α − 1)(Au + CAl) + (e−2α − 1)(Bu + CBl) (14)

where

Au =
N∑

i,j=Nl+1

Si,j

Zu
i,j

m∑

k=1

hk
i bk

i (15)

Al =
1
2

Nl∑

i=1

N∑

j=Nl+1

Si,j

m∑

k,k′=1

yk
i

bk
j

bk′
j hk′

j (16)

Bu =
N∑

i,j=Nl+1

Si,j

Zu
i,j

m∑

k=1

hk
i τk

i,j (17)

Bl =
1
2

Nl∑

i=1

N∑

j=Nl+1

Si,j

m∑

k=1

yk
i

hk
j

bk
j

(18)

4 Note that this tighter bound can not be used to derive hk
i
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Algorithm 1 MCSSB: Multi-Class Semi-Supervised Boosting Algorithm
Input:
– D: The set of examples; the first Nl examples are labeled.
– s: the number of sampled examples from (N −Nl) unlabeled examples
– T : the maximum number of iterations

for i = 1 to T
– Compute αk

i and βk
i for every example as given in Equation 12.

– Assign each unlabeled example xi to class k∗i = arg maxk(αk
i +Cβk

i ) and weight

wi = α
k∗i
i + Cβ

k∗i
i

– Sample s unlabeled examples using a distribution that is proportional to wi

– Train a multi-class classifier h(x) using the labeled examples and the sampled
unlabeled examples with assigned classes

– Predict hk
i for unlabel examples using h(x), and compute α using Equation 19.

Exit the loop if α ≤ 0.
– H(x) ← H(x) + αh(x)

The proof of Lemma 2 can be found in Appendix B. Using Lemma 2, Theorem 3
gives the optimal solution for α.

Theorem 3 The optimal α that minimizes the upper bound of F̃ in Equation 14
is

α =
1
4

log
(

Bu + CBl

Au + CAl

)
(19)

Algorithm 1 summarizes the proposed boosting algorithm for multi-class
semi-supervised learning. Several issues need to be pointed out: (a) wi, the
weight for the ith unlabeled example, is guaranteed to be non-negative. This
is because

∑m
k=1 αk

i + Cβk
i = 0 and therefore wi = maxk(αk

i + Cβk
i ) ≥ 0; (b) we

adopt the sampling approach to train a weak classifier. In our experiments, the
number of sampled examples at each iteration is set as s = max(20, N/5); (c)
the maximum number of iteration T is set to be 50 as suggested in [22]5.

Theorem 4 shows that the proposed boosting algorithm reduces the objective
function F exponentially.

Theorem 4 The objective function after T iterations, denoted by FT , is bounded
as follows:

FT ≤ F 0 exp

(
−

T∑
t=1

(
√

At
u + CAt

l −
√

Bt
u + CBu

l )2

F t−1

)
(20)

where Au, Al, Bu and Bl are defined in Lemma 2.

5 We run the algorithm with much larger numbers of iterations and find that both
the objective function and the classification accuracy remains essentially the same
after 50 iterations. We, therefore, set the number of iterations to be 50 to save the
computational cost.
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Proof. Using Lemma 2 and Theorem 3, we have

F̃ − F ≤
√

Bu + CBl

Au + CAl
(Au + CAl) +

√
Au + CAl

Bu + CBl
(Bu + CBl)− (Au + CAl + Bu + CBl)

= −
(√

Au + CAl −
√

Bu + CBl

)2

,

which is equivalent to

F̃

F
≤ 1−

(√
Au + CAl −

√
Bu + CBl

)2

F

≤ exp

(
−

(√
Au + CAl −

√
Bu + CBl

)2

F

)
(21)

The above inequality follows from exp(x) ≥ 1 + x. We rewrite FT as

FT = F 0
T∏

t=1

(F t/F t−1)

By substituting F t/F t−1 with the bound in Equation 21, we have the result in
the theorem.

4 Experiments

In this section, we present our empirical study on a number of UCI data sets.
We refer to the proposed semi-supervised multi-class boosting algorithm as MC-
SSB. In this study, we aim to show that (1) MCSSB can improve several avail-
able multi-class classifiers with unlabeled examples, (2) MCSSB is more effective
than the existing semi-supervised boosting algorithms, and (3) MCSSB is robust
to the model parameters and the number of labeled examples. It is important
to note that it is not our intention to show that the proposed semi-supervised
multi-class boosting algorithm always outperforms the other semi-supervised
learning algorithms. Instead, our objective is to demonstrate that the proposed
semi-supervised boosting algorithm is able to effectively improve the accuracy
of different supervised multi-class learning algorithms using the unlabeled ex-
amples. Hence, the empirical study is focused on a comparison with the existing
semi-supervised boosting algorithms, rather than a wide range of semi-supervised
learning algorithms.

We follow [7] and use Decision Tree and Multi-Layer Perceptron (MLP) as
the base multi-class classifiers in our study. In order to create weak classifiers as
most boosting algorithms do, we restrict the levels of decision tree to be two,
and the structure of MLP to be one hidden layer with two nodes. We create an
instance of semi-supervised multi-class learning boosting algorithm for each base
classifier, denoted by MCSSB-Tree and MCSSB-MLP, respectively. We compare
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Table 1. Description of data sets.

# samples # attributes # Classes

Balance 625 4 3

Glass 214 9 6

Iris 150 4 3

Wine 178 13 3

Car 1728 6 4

Vowel 990 14 11

Contraceptive 1473 9 3

Dermatology 358 34 6

Ecoli 336 7 8

Flag 194 28 8

Segmentation 2310 19 7

pendigit 3498 16 10

Optdigits 1797 64 10

Soybean 686 35 19

Waves 5000 21 3

Yeast 1484 8 10

Zoo 101 16 7

the proposed semi-supervised boosting algorithm to ASSEMBLE, a state-of-the-
art semi-supervised boosting. Similar to MCSSB, two instances of classifiers are
created for ASSEMBLE using decision tree and MLP base classifiers, denoted
by Assemble-Tree and Assemble-MLP, respectively. A Gaussian kernel is used
as the measure for similarity in MCSSB-Tree and MCSSB-MLP with kernel
width set to be 15% of the range of the distance between examples 6 for all
the experiments, as suggested in [23]. Table 1 summarizes seventeen benchmark
data sets from the UCI data repository used in this study.

4.1 Evaluation of Classification Performance

Many binary semi-supervised learning studies assume a very small number of
labeled examples, e.g. less that 1% of the total number of examples. This setup
is difficult to be applied to multi-class cases since it may result in some classes
with no labeled examples. As an example, consider Glass data set in Table 1,
where 1% of the examples will provide us with only two labeled examples which
will cover at most two classes. This motivated us to run two different sets of
experiments to evaluate the performance of the proposed algorithm. In the first
set of experiments, we assume that 5% of examples are labeled and in the second
case we assume that 10% of examples are labeled 7. We repeat each experiment

6 i.e. 0.15× (dmax− dmin), where dmin and dmax are minimum and maximum distance
between examples

7 Our experience with one labeled example per class shows similar results. We omit
the result due to space limitation
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Table 2. Classification accuracy with 5% of samples as the labeled set(Nl)

Tree MLP Assemble-tree Assemble-MLP MCSSB-tree MCSSB-MLP

Balance 65.0±0.9 82.0±1.4 65.0±0.9 82.2±1.0 72.5±1.0 83.2±0.7

Glass 39.7±1.6 40.3±1.8 39.7±1.6 41.0±1.8 40.1±1.2 40.4±1.1

Iris 32.3±0.1 71.6±2.5 32.4±0.1 74.3±3.8 77.4±2.6 74.0±3.0

Wine 33.4±1.3 70.0±2.7 62.4±3.6 66.0±2.8 78.2±3.5 75.0±3.1

Car 80.5±0.5 76.4±1.0 80.5±0.5 76.8±0.5 81.6±0.3 77.7±0.5

Vowel 27.5±1.1 17.9±0.6 26.0±1.1 18.8±0.6 28.1±1.1 19.3±0.6

Contraceptive 47.3±0.8 45.0±0.7 47.2±0.7 44.1±0.9 47.3±0.8 45.4±0.6

Dermatology 53.6±2.2 48.3±2.0 53.4±2.3 46.2±2.4 77.0±1.2 68.0±1.8

Ecoli 57.8±1.7 61.5±1.8 57.8±1.7 59.3±1.7 52.0±2.2 56.2±1.3

Flag 23.5±1.3 22.1±1.1 23.5±1.3 25.1±1.2 30.3±1.1 26.0±1.2

Segmentation 47.6±2.1 43.2±1.3 45.9±2.1 44.8±1.5 47.6±2.1 44.5±1.6

pendigit 33.8±1.5 30.0±1.0 32.5±1.5 29.8±0.8 59.3±1.1 54.7±1.7

Optdigits 33.0±1.8 23.3±1.0 30.6±1.4 23.3±0.7 33.0±1.8 21.9±0.6

Soybean 37.2±1.3 25.0±0.9 35.2±1.4 25.4±1.1 42.4±1.1 33.4±0.9

Waves 65.0±0.3 73.3±1.7 65.0±0.3 73.3±1.8 65.4±0.3 74.8±0.8

Yeast 43.6±0.7 40.2±0.6 43.4±0.6 40.4±0.9 42.7±0.9 39.4±1.2

Zoo 32.6±2.7 39.8±3.0 41.7±4.0 40.7±3.0 59.0±2.7 56.9±2.6

20 times and report both the mean and standard deviation of the classification
accuracy.

Table 2 shows the result of different algorithms for the first experiment (5%
labeled examples) with the performance of the best approach for each dataset
highlighted by bold font. First, notice that MCSSB significantly8 improves the
accuracy of both decision tree and MLP for 10 of the 17 data sets. For six data
sets, including ‘Glass”, “Vowel”, “Contraceptive”, “Segmentation”, “Optdigits”,
and “Yeast”, the classification accuracy remains almost unchanged after apply-
ing MCSSB to the base multi-class learning algorithm. Only for data set “Ecoli”,
MCSSB-MLP performs significantly worse than MLP. Note that for several data
sets, the improvement made by the MCSSB is dramatic. For instance, the clas-
sification accuracy of decision tree is improved from 32.8% to 77.4% for data set
“Iris”, and from 33.4% to 78.2% for data set “Wine”; the classification accuracy
of MLP is improved from 48.3% to 68.0% for data set “Dermatology”, and from
30.0% to 54.7% for data set “pendigit”. Second, when compared to ASSEMBLE,
we found that the proposed algorithm significantly outperforms ASSEMBLE for
14 of the 16 data sets for both decision tree and MLP. Only for data set “Ecoli”,
ASSEMBLE performs better than MCSSB when using MLP as the base classi-
fier. The key differences between MCSSB and ASSEMBLE is that MCSSB is not
only specially designed for multi-class classification, it does not solely rely on the
pseudo-labels obtained in the iterations of boosting algorithm. Thus, the suc-

8 The variance reported in the table clearly shows the advantage of our method com-
pared to the baseline.
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Table 3. The accuracy of different methods with 10% labeled examples

Tree MLP Assemble-tree Assemble-MLP MCSSB-tree MCSSB-MLP

Balance 67.7±0.7 86.0±1.1 67.8±0.7 87.0±0.5 69.5±1.0 86.6±0.6

Glass 46.9±1.7 42.7±1.5 46.8±1.7 45.4±1.6 45.3±1.5 43.8±1.7

Iris 68.5±2.4 79.2±3.0 68.7±2.4 77.2±2.6 79.7±2.7 84.1±2.3

Wine 73.0±2.7 78.2±2.4 73.0±2.7 74.7±3.0 81.8±1.2 83.2±1.2

Car 83.2±0.5 77.1±0.6 83.1±0.5 78.4±0.7 83.7±0.5 78.0±0.4

Vowel 27.2±1.1 21.2±0.5 24.8±1.0 21.7±0.9 27.6±1.0 22.8±1.1

Contraceptive 42.6±0.0 31.9±3.2 42.6±0.0 28.6±3.5 81.4±1.8 71.0±2.8

Dermatology 64.6±1.6 48.7±2.0 63.9±1.5 50.4±2.7 78.4±1.4 65.6±2.1

Ecoli 65.1±1.7 64.8±1.6 65.0±1.7 65.2±1.4 61.4±1.9 64.0±1.6

Flag 38.7±1.5 29.2±1.3 38.5±1.4 30.3±1.5 38.9±1.4 28.3±1.1

Segmentation 48.5±2.3 46.3±1.5 46.4±2.0 42.9±1.3 48.5±2.3 46.8±1.7

Pendigits 36.5±1.5 31.7±0.8 34.0±1.4 31.3±0.9 57.7±1.2 52.2±1.4

Optdigits 33.9±1.3 26.3±0.8 31.9±1.1 27.5±0.6 33.9±1.3 27.6±1.1

Soybean 37.7±1.1 33.4±1.0 37.2±1.6 31.7±1.0 42.8±1.1 39.9±1.2

Waves 65.5±0.3 76.6±1.4 65.5±0.3 76.7±2.3 65.5±0.3 79.3±0.9

Yeast 47.9±0.7 41.0±1.1 47.5±0.6 41.7±0.9 47.8±0.6 41.6±1.1

Zoo 52.0±1.8 51.8±2.5 52.0±1.8 50.8±2.3 74.3±1.9 71.9±1.5

cess of MCSSB indicates the importance of designing semi-supervised learning
algorithms for multi-class problems.

Table 3 shows the performance of different algorithms when 10% of the ex-
amples are labeled. Similar to the previous case, MCSSB outperforms both the
base classifiers and the ASSEMBLE method for 8 of the 17 data sets. For the
rest of data sets, including “Balance”, “Glass”,“Car”, “Vowel”, “Ecoli”, “Flag”,
“Segmentation”, “Optdigits”, “Waves ”, and “Yeast”, the classification accuracy
remains unchanged after applying MCSSB to the base supervised learning al-
gorithms. Noitce that the amount of improvement in this case is less than the
case with 5% labeled examples. This is because as the number of labeled exam-
ples increases, the improvement gained by a semi-supervised learning algorithm
decreases. Moreover, notice that similar to the case of 5% labeled examples, AS-
SEMBLE is not able to improve the performance of the base classifier. Based
on the above observation, we conclude that the proposed semi-supervised boost-
ing algorithm is able to effectively exploit the unlabeled data to improve the
performance of supervised multi-class learning algorithms.

4.2 Sensitivity to the number of labeled examples

To study the sensitivity of MCSSB to the number of unlabeled examples, we
run MCSSB and the baselines by varying the number of labeled examples from
2% to 20% of the total number of examples. Figure 1 shows the result of this
experiment on 4 of the datasets when the base classifier is tree9. Notice that as
9 We omit the result for other data sets and MLP as the base classifier due to space

limitation.
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(b) Iris

2 4 6 8 10 12 14 16 18 20
72

74

76

78

80

82

84

labeled examples(% of total examples)

A
cc

ur
ac

y

 

 

Tree
Assemble−Tree
MCSSB−Tree

(c) Car
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(d) Soybean

Fig. 1. Sensitivity of MCSSB to number of labels

the number of labeled examples increases, the performance of difference meth-
ods improves. But MCSSB keeps its superiority for almost all the cases when
compared to both the base classifier and the ASSEMBLE algorithm. We also
observe that overall ASSEMBLE is unable to make significant improvement over
the base classifier regardless of the number of labeled examples. More surpris-
ingly, for data set “Soybean”, ASSEMBLE performs worse than the base clas-
sifier. These results indicate the challenge in developing boosting algorithms for
semi-supervised multi-class learning. Compared to ASSEMBLE that relies on
the classification confidence to decide the pseudo labels for unlabeled examples,
MCSSB is more reliable since it exploits both the classification confidence and
similarities among examples when determining the pseudo labels.

4.3 Sensitivity to Base Classifier

In this section, we focus on examining the sensitivity of MCSSB to the com-
plexity of base classifiers. This will allow us to understand the behavior of the
proposed semi-supervised boosting algorithm for both weak classifiers and strong
classifiers. To this end, we use decision tree with varying number of levels as the
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(b) Dermatology with 5% labeled exam-
ples
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(c) soybean with 5% labeled examples
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(d) Pendigits with 5% labeled examples

Fig. 2. Sensitivity of MCSSB to depth of the tree

base classifier. Only the results for datasets Balance, Dermatology, Soybean, and
Pendigit are reported in this study because these were the only four data sets
for which the fully grown decision tree had more than two levels.

Figure 2 shows the classification accuracy of Tree, ASSEMBLE-tree and
MCSSB-tree when we vary the number of levels in decision tree. Notice that
in each case, the maximum number of level in the plot for each data set is set to
the tree fully grown for that data set. It is not surprising that overall the classi-
fication accuracy is improved with increasing number of levels in decision tree.
We also observe that MCSSB is more effective than ASSEMBLE for decision
trees with different complexity.

5 Conclusion

Unlike many existing semi-supervised learning algorithms that focus on binary
classification problems, we address multi-class semi-supervised learning directly.
We have proposed a new framework, termed multi-class semi-supervised boosting
(MCSSB), that is able to improve the classification accuracy of any given base
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multi-class classifier. We showed that our proposed framework is able to improve
the performance of a given classifier much better than Assemble, a well-known
semi-supervised boosting algorithm, on a large set of UCI datasets. We also show
that MCSSB is very robust to the choice of base classifiers and the number of
labeled examples.
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Appendix A: Proof of Lemma 1

Proof. Bound in Equation (8) can be derived as follows:
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The inequality in (22) follows the convexity of reciprocal function, i.e.,
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Bound in Equation 9 can be derived as follows
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Using the definition of φk
i,j , we have the result in Equation 9.

Appendix B: Proof of Lemma 2

Proof. Following the result in (22), we have
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The inequality in the above derivation follows the convexity of exponential func-
tion (similar to the proof of Lemma 1). For Zl

i,j , we have
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Replacing 1/Z̃u
i,j and 1/Z̃l

i,j in (8) and (9) with the above bounds, we have the
result in Lemma 2.
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