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Abstract. Clustering ensembles have emerged as a powerful method foovingprboth the
robustness as well as the stability of unsupervised claswificaolutions. However, finding a
consensus clustering from multiple partitions is a difficult problthat can be approached from
graph-based, combinatorial or statistical perspectives. This sxidynds previous research on
clustering ensembles in several respects. First, we introduodi@d representation for multiple
clusterings and formulate the corresponding categorical clugtproblem. Second, we propose a
probabilistic model of consensus using a finite mixture of multinodhstibutions in a space of
clusterings. A combined partition is found as a solution to the @amneleng maximum likelihood
problem using the EM algorithm. Third, we define a new consensusduortbtt is related to the
classical intra-class variance criterion using the genedaliautual information definition. Finally,
we demonstrate the efficacy of combining partitions generategiely clustering algorithms that
use data projections and random data splits. A simple explanatory imadielred for the behavior
of combinations of such weak clustering components. Combination accusrayalyzed as a
function of several parameters that control the power and resolutammgfonent partitions as well
as the number of partitions. We also analyze clustering ensewitiieimcomplete information and
the effect of missing cluster labels on the quality of ovecalhsensus. Experimental results
demonstrate the effectiveness of the proposed methods on several real-world.dataset
KEYWORDS: clustering, ensembles, multiple classifier systems, camsémnsction, mutual
information
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1 Introduction

In contrast to supervised classification, clustering is inhgrantlill-posed problem, whose solution
violates at least one of the common assumptions about scale-ineariasfmess, and cluster
consistency [33]. Different clustering solutions may seem equalysible without a priori
knowledge about the underlying data distributions. Every clustering ithlgorimplicitly or
explicitly assumes a certain data model, and it may produseesus or meaningless results when
these assumptions are not satisfied by the sample data. Thagatlability of prior information
about the data domain is crucial for successful clustetrogigh such information can be hard to
obtain, even from experts. Identification of relevant subspaces {2$umalization [24] may help to
establish the sample data’s conformity to the underlying distoibsitor, at least, to the proper
number of clusters.

The exploratory nature of clustering tasks demands efficiettiade that would benefit from
combining the strengths of many individual clustering algorithms. iShise focus of research on
clustering ensembles, seeking a combination of multiple partitionptbaides improved overall
clustering of the given data. Clustering ensembles can go beyoridswigpically achieved by a
single clustering algorithm in several respects:

» Robustness. Better average performance across the domains and datasets.

*= Novelty. Finding a combined solution unattainable by any single clustering algorithm

=  Sability and confidence estimation. Clustering solutions with lower sensitivity to noise, outliers
or sampling variations. Clustering uncertainty can be assessed from eng@tridutions.

» Parallelization and Scalability. Parallel clustering of data subsets with subsequent combination
of results. Ability to integrate solutions from multiple distribussmirces of data or attributes
(features).

Clustering ensembles can also be used in multiobjective clustasingg compromise between

individual clusterings with conflicting objective functions. Fusion of teusgs using multiple



sources of data or features becomes increasingly importanttributisd data mining, e.g., see
review in [41]. Several recent independent studies [10, 12, 14, 15, 43, 4fjibagered clustering
ensembles as a new branch in the conventional taxonomy of clustkgorghms [26, 27]. Please
see the Appendix for detailed review of the related work, including [7, 11, 16, 19, 28, 31, 35].

The problem of clustering combination can be defined generally Esvéolgiven multiple
clusterings of the data set, find a combined clustering with betiity. While the problem of
clustering combination bears some traits of a classical dhugtproblem, it also has three major
issues which are specific to combination design:

1. Consensus function: How to combine different clusterings? How to resolve the label
correspondence problem? How to ensure symmetrical and unbiased consensus wittorespec
all the component partitions?

2. Diversity of clustering: How to generate different partitions? Wh#te source of diversity in
the components?

3. Strength of constituents/components: How “weak” could each input partition be? \ilieat is
minimal complexity of component clusterings to ensure a successful corabihati

Similar questions have already been addressed in the frameworkltgflenclassifier systems.
Combining results from many supervised classifiers is aneamsearch area (Quinlan 96, Breiman
98) and it provides the main motivation for clusterings combination. Howigvemot possible to
mechanically apply the combination algorithms from classifeat(supervised) domain to
clustering (unsupervised) domain. Indeed, no labeled training data ilabsesan clustering;
therefore the ground truth feedback necessary for boosting the ovetaidey cannot be used. In
addition, different clusterings may produce incompatible data laseliresulting in intractable
correspondence problems, especially when the numbers of clusterdiffarent. Still, the
supervised classifier combination demonstrates, in principle, howpteukblutions reduce the

variance component of the expected error rate and increase the robustness ofidine sol



From the supervised case we also learn that the proper combinati@alottlassifiers [32, 25,
18, 6] may achieve arbitrarily low error rates on training,dadavell as reduce the predictive error.
One can expect that using many simple, but computationally inexpecsmponents will be
preferred to combining clusterings obtained by sophisticated, but c¢atopally involved
algorithms.

This paper further advances ensemble methods in several aspectyy, rlasign of new
effective consensus functions, development of new partition generatidranmsos and study of

the resulting clustering accuracy.

1.1 Our Contribution

We offer a representation of multiple clusterings as afsaew attributes characterizing the data
items. Such a view directly leads to a formulation of the combimgtroblem as a categorical
clustering problem in the space of these attributes, or, in ahesta median partition problem.
Median partition can be viewed as the best summary of then giveut partitions. As an
optimization problem, median partition is NP-complete [3], with ainanom of heuristics for an
approximate solution.

This work focuses on the primary problem of clustering ensemblesglyahe consensus
function, which creates the combined clustering. We show how medrétign is related to the
classical intra-class variance criterion when generalized ahunhformation is used as the
evaluation function. Consensus function based on quadratic mutual informalidhigroposed
and reduced to themeans clustering in the space of specially transformed cluster. labels

We also propose a new fusion method for unsupervised decisions thatdsolbaa probability
model of the consensus partition in the space of contributing clusteesconsensus partition is
found as a solution to the maximum likelihood problem for a given cingtemsemble. The
likelihood function of an ensemble is optimized with respect to thenpeters of a finite mixture

distribution. Each component in this distribution corresponds to a cluastbe target consensus



partition, and is assumed to be a multivariate multinomial distabuifhe maximum likelihood
problem is solved using the EM algorithm [8].

There are several advantages to QMI and EM consensus functi@s iflelude: (i) complete
avoidance of solving the label correspondence problem, (ii) low congnaatomplexity, and (iii)
ability to handle missing data, i.e. missing cluster labels fdaicepatterns in the ensemble (for
example, when bootstrap method is used to generate the ensemble).

Another goal of our work is to adopt weak clustering algorithms amabme their outputs.
Vaguely defined, a weak clustering algorithm produces a patrtitioichvis only slightly better than
a random partition of the data. We propose two different weak chgstalgorithms as the
component generation mechanisms:

1. Clustering of random 1-dimensional projections of multidimensional ddtes can be
generalized to clustering in any random subspace of the original data space.
2. Clustering by splitting the data using a number of random hypegil&oe example, if only
one hyperplane is used then data is split into two groups.
Finally, this paper compares the performance of different consehswdions. We have
investigated the performance of a family of consensus functioresl s categorical clustering
including the co-association based hierarchical methods [15, 16, 17], hypergraphrakgftit, 29,
30] and our new consensus functions. Combination accuracy is analyzefumstian of the
number and the resolution of the clustering components. In addition, wg selustering
performance when some cluster labels are missing, which i3 efiteountered in the distributed

data or re-sampling scenarios.

2 Representation of Multiple Partitions

Combination of multiple partitions can be viewed as a partitionis§ teself. Typically, each
partition in the combination is represented as a set of labémeddy a clustering algorithm. The

combined partition is obtained as a result of yet another clustaligogthm whose inputs are the



cluster labels of the contributing partitions. We will assume tthe labels are nominal values. In
general, the clusterings can be “soft”, i.e., described bydhkvalues indicating the degree of
pattern membership in each cluster in a partition. We considerlwang” partitions below, noting
however, that combination of “soft” partitions can be solved by numerasgeohg algorithms and
does not appear to be more complex.

Suppose we are given a set Mfdata pointsX = {xi,..., Xy} and a set ofH partitions
M={m,..., T4} of objects inX. Different partitions ofX return a set of labels for each poxat
i=1,...,N:

X, = {75,060, 72, ()77 (XD} @
Here, H different clusterings are indicated amgix) denotes a label assigned xoby thej-th

algorithm. No assumption is made about the correspondence betweesbéhe groduced by
different clustering algorithms. Also no assumptions are neaidih@ moment about the data input:

it could be represented in a non-metric space or a$xahdissimilarity matrix. For simplicity, we

use the notationy, =7z (x;) ory; = T(X). The problem of clustering combination is to find a new

partition T of dataX that summarizes the information from the gathered partifitn®ur main
goal is to construct a consensus partition without the assistartbe ofiginal patterns iX, but
only from their labelsr delivered by the contributing clustering algorithms. Thus, suchmpalig
important issues as the underlying structure of both the partaimhslata are ignored for the sake
of a solution to the unsupervised consensus problem. We emphasizepghe¢ afsnew features is
induced by the sdil. One can view each component partitipras a new feature with categorical
values, i.e. cluster labels. The values assumed biyttheew feature are simply the cluster labels
from partitiontg. Therefore, membership of an objecin different partitions is treated as a new
feature vectory = m(x), an H-tuple. In this case, one can consider partitipix) as a feature
extraction function. Combination of clusterings becomes equivalghetproblem of clustering of

H-tuples if we use only the existing clusterings,{.., T}, without the original features of da¥



Hence the problem of combining partitions can be transformeddtegarical clustering problem.

Such a view gives insight into the properties of the expected conaninathich can be inferred

through various statistical and information-theoretic techniques.rticydar, one can estimate the
sensitivity of the combination to the correlation of componentgyfes) as well as analyze various
sample size issues. Perhaps the main advantage of this regtiesdntthat it facilitates the use of
known algorithms for categorical clustering [37, 48] and allows onde&gn new consensus
heuristics in a transparent way. The extended representataatadf can be illustrated by a table

with N rows and ¢+H) columns:

... Ty
X1 X11 ... X1d T|1(X]) ﬂH(X])
X2 X21 ... Xag  Ty(Xp) ... Ti(Xy)
XN OXNL .. Xnd TH(XN) . T(XN)
N J o~ J
N
Original d features "New" H features

The consensus clustering is found as a partitigrof a set of vectory = {y;} that directly

translates to the partition of the underlying data poirds {
3 A Mixture Modéd of Consensus

Our approach to the consensus problem is based on a finite nmxided for the probability of the
cluster labely=m(x) of the pattern/object. The main assumption is that the labglare modeled
as random variables drawn from a probability distribution describesl mixture of multivariate

component densities:

M
P(Y; 1©) = 3 a,Pu(yi10,,), (2)
m=1
where each component is parametrize®hyTheM components in the mixture are identified with
the clusters of the consensus partitim The mixing coefficientsan, correspond to the prior

probabilities of the clusters. In this model, data poiy$ ére presumed to be generated in two



steps: first, by drawing a component according to the probabilitys rhastion ar,, and then
sampling a point from the distributioRn(y|&y). All the dataY={y}, are assumed to be

independent and identically distributed. This allows one to reprdseig likelihood function for

the parameter®={ a,..., aw, 04,..., O } given the data set as:

N N M
log L (91Y) =log [] P(y, 1©) =3, 1002, @0 Py, 10,). )
= i=1 m=1
The objective of consensus clustering is now formulated as anmmaxilikelihood estimation

problem. To find the best fitting mixture density for a given dgtave must maximize the

likelihood function with respect to the unknown paramegers

©" =argmax logL(©]Y). (4)
The next important step is to speci?y the model of component-conditienaitiesP(y|&).
Note, that the original problem of clustering in the space of Xdtas been transformed, with the
help of multiple clustering algorithms, to a space of new mulatarieaturey = 1(x). To make

the problem more tractable, a conditional independence assumption isamtte components of

vectory;, namely that the conditional probabilityyfcan be represented as the following product:

H
Pay1100) = [P (3,1032). ®)
To motivate this, one can note that even hj‘_the different clustatgayithms (indexed bp) are not
truly independent, the approximation by product in Eq. (5) can be @astifiy the excellent
performance of naive Bayes classifiers in discrete donj@#is Our ultimate goal is to make a
discrete label assignment to the datXithrough an indirect route of density estimationirofThe
assignments of patterns to the clustersgiare much less sensitive to the conditional independence

approximation than the estimated values of probabilf@s |© , as)supported by the analysis of

naive Bayes classifier in [9].



The last ingredient of the mixture model is the choice abaability densityP{” (y; [0)) for

the components of the vectors Since the variableg; take on nominal values from a set of cluster

labels in the partitioms, it is natural to view them as the outcome of a multinomial trial:

K(j)

O 100)= [] 9n 0™ ©)
Here, without the loss of generality, the labels of the etasin g are chosen to be integers in

{1,...,K(j)}. To clarify the notation, note that the probabilities of the outcomneslefined a®,, (k)

and the product is over all the possible valueg;dbels of the partitiom;. Also, the probabilities

sum up to one:

K(j)

> (k) =10 O{L...,H}, OmO{L,...,M}. (7)

For example, if th¢-th partition has only two clusters, and possible labels are 0 ahdriLEq. (5)
can be simplified as:

P (YI0Y) = 9 A-9,)". ®
The maximum likelihood problem in Eq. (3) generally cannot be solvadciosed form when all
the parameter®={ a,..., aw, 01,..., O} are unknown. However, the likelihood function in Eq. (2)
can be optimized using the EM algorithm. In order to adopt the gbtitim, we hypothesize the
existence of hidden dafa and the likelihood of complete datd, ). If the value ofz is known
then one could immediately tell which of themixture components was used to generate the point
yi. The detailed derivation of the EM solution to the mixture model mitltivariate, multinomial
components is given in the Appendix. Here we give only the equatiorteefde- and M-steps

which are repeated at each iteration of the algorithm:
[ HoRO) 1] 5(y| vk)
an [ ] Emk)™" o
- i=L k= 9
Elz,]= H K()

a,[][]en 0"

J

M=

.u‘

n



Z E[Zim]
= (10)

am = NI M
> Y Elz,]
2.0y K)E[Z,]
ﬂjm(k) = Ni=|1-(j) . (11)
2. 2 0(Y;. KE[z,]
i=1 k=1

The solution to the consensus clustering problem is obtained bypde sinspection of the
expected values of the variablelz ], due to the fact thd[z,] represents the probability that the
patterny; was generated by tme-th mixture component. Once convergence is achieved, a pgttern
is assigned to the component which has the largest value for the hiddexn label

It is instructive to consider a simple example of an ensembdgrd-il shows four 2-cluster
partitions of 12 two-dimensional data points. Correspondence problenpiasized by different
label systems used by the partitions. Table 1 shows the expetied wvé latent variables after 6
iterations of the EM algorithm and the resulting consensusedingt In fact, a stable combination
appears as early as the third iteration, and it corresponds to the true undenligitugesof the data.

Our mixture model of consensus admits generalization for clustensgmbles with incomplete
partitions. Such partitions can appear as a result of clustefisgbsamples or resampling of a
dataset. For example, a partition of a bootstrap sample only prdaimkds for the selected points.
Therefore, the ensemble of such partitions is represented liyoa\ators of cluster labels with
potentially missing components. Moreover, different vectors of cluabels are likely to miss
different components. Incomplete information can also arise when slustering algorithms do
not assign outliers to any of the clusters. Different cluggsrin the diverse ensemble can consider

the same point; as an outlier or otherwise, that results in missing components in the yector
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Figure 1: Four possible partitions of 12 data points into 2 clusters. Biffepartitions use different sets of
labels.

Table 1: Clustering ensemble and consensus solution

n T, T3 . E[z4] E[z,] ConsenstL
yr 2 B X B 0999  0.001 1
Y, 2 A X a 0.997 0.003 1
Yy 2 A Y B 0943 0.057 1
Y. 2 B X B 0999 0.001 1
ys 1 A X B 0999 0001 1
Ye¢ 2 A Y B 0943  0.057 1
Y7 2 B Y a 0.124 0.876 2
Vs 1 B Y a 0.019 0.981 2
Yo 1 B Y B 0.260 0.740 2
yig 1 A Y a 0.115 0.885 2
Yy, o 2 B Y a 0124 0876 2
yi, 1 B Y a 0.019 0.981 2

Yet another scenario leading to missing information can occur intedhuy combination of
distributed data or ensemble of clusterings of non-identical replicas of atdatas

It is possible to apply the EM algorithm in the case of misdatg [20], namely missing cluster
labels for some of the data points. In these situations, each yetof can be split into observed

obs

and missing componentg = (yi yi™). Incorporation of a missing data leads to a slight

10



obs

modification of the computation of E and M steps. First, the expecte@sE[z, |y, ©'] are

now inferred from the observed components of vegtare. the products in Eq. (9) are taken over

H .
known Iabelsl‘! . |‘L . Additionally, one must compute the expected vakes, yi™ yi°*% ©']
J= jiyors

obs

and substitute them, as well Bfz., | yi- , ©'], in the M-step for re-estimation of parameters

J,.(k) . More details on handling missing data can be found in [20].

Though data with missing cluster labels can be obtained in differ@yg, we analyze only the
case when componentsygfare missing completely at random [46]. It means that the praladdil
a component to be missing does not depend on other observed or unobserbéesvataie, that
the outcome of clustering of data subsamples (e.g., bootstrapfeieuiffrom clustering the entire
data set and then deleting a random subset of labels. However, bis goaresent a consensus
function for general settings. We expect that experimentaltse®r ensembles with missing labels
are applicable, at least qualitatively, even for a combination of bootstragririgst

The proposed ensemble clustering based on mixture model consensubralgosummarized
below. Note that any clustering algorithm can be used to gereragenble instead of the k-means

algorithm shown in this pseudocode:

begin

for i=1toH // H - number of clusterings
cluster a dataset: 1 — k-meansK)
add partitionrtto the ensemblBl= {I1,14

end

initialize model paramete® ={ o, ..., aw, 04,..., 0 }

do until convergence criterion is satisfied
compute expected valuéz,], i=1.N, m=1.M
computeE[z yi™ for missing data (if any)
re-estimate parametes (k),j=1.H, m=1.M, Uk

end

T (X)) = index of component & with the largest expected valuies1.N

11



return 1 // consensus partition

end

The value ofM, number of components in the mixture, deserves a separate dischssios t
beyond the scope of this paper. Here, we assume that the target numbeers idysedetermined.
It should be noted, however, that mixture model in unsupervised atasisifi greatly facilitates
estimation of the true number of clusters [13]. Maximum likelihoothtdation of the problem
specifically allows us to estimatd by using additional objective functions during the inference,
such as the minimum description length of the model. In addition, the pdpmsesensus
algorithm can be viewed as a version of Latent Class Analggs see [4]), which has rigorous
statistical means for quantifying plausibility of a candidate mixturdeh

Whereas the finite mixture model may not be valid for the pettar the original space (the
initial representation), this model more naturally explains tphars¢éion of groups of patterns in the
space of “extracted” features (labels generated by théiqas). It is somewhat reminiscent of
classification approaches based on kernel methods which rely on linear diaatifoinctions in the
transformed space. For example, Support Vector Clustering [5] sebksical clusters after the

kernel transformation that corresponds to more complex cluster shapes in tie pagern space.

4 |nformation-Theor etic Consensus of Clusterings

Another candidate consensus function is based on the notion of median partition. A median partiti
ois the best summary of existing partitiondinin contrast to the co-association approach, median
partition is derived from estimates of similarities betwetribates (i.e., partitions inf1), rather

than from similarities between objects. A well-known exampléisf approach is implemented in
the COBWEB algorithm in the context of conceptual clustering [@8IBWEB clustering criterion
estimates the partition utility, which is the sum of categdiljty functions introduced by Gluck

and Corter [21]. In our terms, the category utility functid(o, 15) evaluates the quality of a

' Here “attributes” (features) refer to the partitions ofemsemble, while the objects refer the
original data points.
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candidate median partitionc ={Cj,...,Ck} against some other partition = {L';,..., L'y}, with
labelsL'; for j-th cluster:

K (i) K (i)

U, m) =3 P(C) Y, PIL 1 F -3, P ) (12
with the following notationsp(C,) = |IC/| /N, |Jo(|_‘j) =L /N, Jand p(L, IC.) =L, nC, /]C, |-
The functionU(Tt, T5) assesses the agreement between two partitions as thendiéféretween the
expected number of labels of partitigrnthat can be correctly predicted both with the knowledge of
clusteringrc and without it. The category utility function can also be writerGoodman-Kruskal
index for the contingency table between two partitions [22, 39]. The lbuélidy of the partition

Tc with respect to all the partitions ih can be measured as the sum of pair-wise agreements:
” (13)
U(r,M)=> U(m., 7).

i=1
Therefore, the best median partition should maximize the value of overalt utility

n‘geSt:arg_[(r:naxU (. N . (14)
Importantly, Mirkin [39] has proved that maximization of partitionitytiin Eq. (13) is equivalent
to minimization of the square-error clustering criterion ifknenber of clusterK in target partition
Tc is fixed. This is somewhat surprising in that the partition wtflinction in Eq. (14) uses only
the between-attribute similarity measure of EQ.(12), while sgeaor criterion makes use of
distances between objects and prototypes. Simple standardizatioagurizatl labels infg,...,T4}
effectively transforms them to quantitative features [39]. Bfisws us to compute real-valued
distances and cluster centers. This transformation replagesht partitionts assumingK(i) values

by K(i) binary features, and standardizes each binary feature t@m anzamn. In other words, for

each objeck we can compute the values of the new featyj€s), as following:

¥, () =0(L,,72(x)) - p(L,), for j=1... K(i), i=1..H . (15)

13



Hence, the solution of median partition problem in Eg. (4) can be apewagk-means clustering

algorithm operating in the space of featugesf the number of target clusters is predetermined. We

use this heuristic as a part of empirical study of consensus functions.
Let us consider the information-theoretic approach to the mediaigmagroblem. In this
framework, the quality of the consensus partitienis determined by the amount of information

| (77.,M) it shares with the given partitions M. Strehl and Ghosh [47] suggest an objective

function that is based on the classical Shannon definition of mutual information:

me=argmax! . ), wherel(nc,l‘l)=il(ﬂc,ﬂi)1 (16)

C

K K(i)
e, 7)=2. >, pC L)) g( PG L) } (17)

r=1 j=1 (C)p(l—l)

Again, an optimal median partition can be found by solving this optirarz@tioblem. However, it
is not clear how to directly use these equations in a search for consensus.
We show that another information-theoretic definition of entropy watiuce the mutual

information criterion to the category utility function discussedoteef We proceed from the

generalized entropy of degrséor a discrete probability distributid®P=(py,...,pn) [23]:

H(P) =" -1)‘1[2 P —1} s>0, s#1 (18)
i=1
Shannon’s entropy is the limit form of Eq. (18)'
im H¥(P) = —Z p log, p . (19)
=1
Generalized mutual information betweerandn can be defined as:
S(ﬂ’ﬂc)sz(ﬂ)_Hs(ﬂlﬂc)- (20)

Quadratic entropy s€2) is of particular interest, since it is known to be closallated to
classification error, when used in the probabilistic measure ef-ohss distance. Whesr2,

generalized mutual informatidiire, 5) becomes:

14



K(i) _ K K(i) .
IZ(ITC,]Ti):—Z[Z p(l—lj )2 _1J+ 2 p(cr )[Z p(l—lj |Cr )2_ 1)j =
j=1 r=1 j=1 (21)
K K (i) , 5 K (i) o
=2 pC)Y. P IC ¥ -2 pl, ¥ =2 (7. 77 ).

r=1 j=1 j=1
Therefore, generalized mutual information givesgame consensus clustering criterion as category
utility function in Eq. (13). Moreover, tradition&bini-index measure for attribute selection also
follows from Egs. (12) and (21). In light of MirKe result, all these criteria are equivalent to
within-cluster variance minimization, after simplabel transformation. Quadratic mutual
information, mixture model and other interestingh@ensus functions have been used in our

comparative empirical study.
5 Combination of Weak Clusterings

The previous sections addressed the problem ofecings combination, namely how to formulate
the consensus function regardless of the naturedofidual partitions in the combination. We now
turn to the issue of generating different clusigsifior the combination. There are several principal
guestions. Do we use the partitions produced byemnaus clustering algorithms available in the
literature? Can we relax the requirements forcthstering components? There are several existing
methods to provide diverse partitions:
1. Use different clustering algorithms, elgmeans, mixture of Gaussians, spectral, single-link
etc. [47].
2. Exploit built-in randomness or different parametafrsome algorithms, e.g. initializations and
various values of in k-means algorithm [35, 15, 16].
3. Use many subsamples of the data set, such asapoagsimples [10, 38].
These methods rely on the clustering algorithmschvare powerful on their own, and as such are
computationally involved. We argue that it is pbssito generate the partitions using weak, but less

expensive, clustering algorithms and still achiesmparable or better performance. Certainly, the
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key motivation is that the synergy of many such components will cosape for their weaknesses.
We consider two simple clustering algorithms:

1. Clustering of the data projected to a random subspace. In the siropsestthe data is
projected on 1-dimensional subspace, a random line.Kltheans algorithm clusters the
projected data and gives a partition for the combination.

2. Random splitting of data by hyperplanes. For example, a sragidom hyperplane would
create a rather trivial clustering dfdimensional data by cutting the hypervolume into two
regions.

We will show that both approaches are capable of producing highygoatisensus clusterings in

conjunction with a proper consensus function.

5.1 Splitting by Random Hyperplanes

Direct clustering by use of a random hyperplane illustratesaosliable consensus emerges from
low-informative components. The random splits approach pushes the notiosakfastering
almost to an extreme. The data set is cut by random hypespdgssecting the original volume of
d-dimensional space containing the points. Points separated by thplagpsrare declared to be in
different clusters. Hence, the output clusters are convex. In this situaticasaamation consensus
function is appropriate since the only information needed is whdikepdtterns are in the same
cluster or not. Thus the contribution of a hyperplane partition todkessociation value for any
pair of objects can be either O or 1. Finer resolutions of distamc@aasible by counting the
number of hyperplanes separating the objects, but for simplicitgongot use it here. Consider a
random line dissecting the classic 2-spiral data shown in Fig. \{a)e any one such partition
does little to reveal the true underlying clusters, analysteehyperplane generating mechanism

shows how multiple such partitions can discover the true clusters.
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Figure 2. Clustering by a random hyperplane: (a) An example of splittisgiral data set by a random
line. Points on the same side of the line are in the sameercl@is} Probability of splitting two one-
dimensional objects for different number of random thresholds as a functioraofcéistetween objects.

Consider first the case of one-dimensional data. Splitting of ohjedsdimensional space is
done by a random threshold Rt. In general, ifr thresholds are randomly selected, thefi)
clusters are formed. It is easy to derive that, in 1-dimensgpade, the probability of separating

two objects whose inter-point distanceis exactly:

P(split) =1- - x/L)", (22)
wherelL is the length of the interval containing the objects, alkreshold points are drawn at

random from uniform distribution on this interval. Fig. 2(b) illustratess dependence fd=1 and
r=1,2,3,4. If a co-association matrix is used to combindifferent partitions, then the expected

value of co-association between two objectsHigl— P(split)), that follows from the binomial

distribution of the number of splits id attempts. Therefore, the co-association values found after
combining many random split partitions are generally expected #onoa-linear and a monotonic
function of respective distances. The situation is similar foridmménsional data, however, the
generation of random hyperplanes is a bit more complex. To gereratelom hyperplane it
dimensions, we should first draw a random point in the multidimensiegalrr that will serve as a
point of origin. Then we randomly choose a unit normal vecttirat defines the hyperplane. The
two objects characterized by vectgrandq will be in the same cluster itip)(ugq)>0 and will be
separated otherwise (heak denotes a scalar productafindb). If r hyperplanes are generated,

then the total probability that two objects remain in the saluster is just the product of
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probabilities that each of the hyperplanes does not split the objécis we can expect that the law
governing the co-association values is close to what is obtained in 1-dimensionah $g@oR2).

Let us compare the actual dependence of co-association valuetheviilnction in Eq. (22).
Fig. 3 shows the results of experiments with 1000 differenttipadi by random splits of the Iris
data set. The lIris data is 4-dimensional and contains 150 points. TieerEL,A75 pair-wise
distances between the data items. For all the possible pairsntdé,pach plot in Fig. 3 shows the
number of times a pair was split. The observed dependence of engaimt “distances” derived
from the co-association values vs. the true Euclidean distance, irceede described by the
function in Eq. (22).

Clearly, the inter-point distances dictate the behavior of ragpecb-association values. The
probability of a cut between any two given objects does not depend ornéneobjects in the data
set. Therefore, we can conclude that any clustering algorithm ¢hlas well with the original inter-
point distances is also expected to work well with co-associatidmes/aobtained from a
combination of multiple partitions by random splits. However, this tasuinore of theoretical
value when true distances are available, since they can dealieetly instead of co-association
values. It illustrates the main idea of the approach, namelytlieasynergy of multiple weak
clusterings can be very effective. We present an empiriadly stf the clustering quality of this

algorithm in the experimental section.

5.2 Combination of Clusteringsin Random Subspaces

Random subspaces are an excellent source of clustering diveadifgrovides different views of
the data. Projective clustering is an active topic in data mifiog example, algorithms such as
CLIQUE [2] and DOC [42] can discover both useful projections as asltlata clusters. Here,
however, we are only concerned with the use of random projections fputpese of clustering

combination.
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Figure 3. Dependence of distances derived from the co-association values vsuttiéaclidean distance
for each possible pair of objects in Iris data. Co-association matverescomputed for different numbers of
hyperplanes =1,2,3,4.

Each random subspace can be of very low dimension and it is by itself somewhat univéorma
On the other hand, clustering in 1-dimensional space is computaticciedlyp and can be
effectively performed bk-means algorithm. The main subroutinekeheans algorithm — distance
computation — becomeasktimes faster in 1-dimensional space. The cost of projedidingar with
respect to the sample size and number of dimen€){d), and is less then the cost of dameans
iteration.

The main idea of our approach is to generate multiple partitionzdygcting the data on a
random line. A fast and simple algorithm suchkaseans clusters the projected data, and the
resulting partition becomes a component in the combination. Aftdsyar chosen consensus
function is applied to the components. We discuss and compare sereahsus functions in the
experimental section.

It is instructive to consider a simple 2-dimensional data and oite @fojections, as illustrated

in Fig. 4(a). There are two natural clusters in the data. @ata looks the same in any 1-
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Figure 4. Projecting data on a random line: (a) A sample data withdemtifiable natural clusters
and a line randomly selected for projection. (b) Histogram of thteilalition of points resulting

from data projection onto a random line.

dimensional projection, but the actual distribution of points is differewlifferent clusters in the
projected subspace. For example, Fig. 4(b) shows one possible histhgfritoation of points in 1-
dimensional projection of this data. There are three identifiable snedeh having a clear majority
of points from one of the two classes. One can expect that ahgster k-means algorithm will
reliably separate at least a portion of the points from the aatgcluster. It is easy to imagine that
projection of the data in Fig. 4(a) on another random line would resaltifferent distribution of
points and different label assignments, but for this particular sktta will always appear as a
mixture of three bell-shaped components. Most probably, these modiée wdentified as clusters
by k-means algorithm. Thus each new 1-dimensional view correctpys he group some data
points. Accumulation of multiple views eventually should result in a correct comdunstdrang.

The major steps for combining the clusterings using random 1-d projections @beteby the

following procedure:

begi n
for i=1 to H //Histhe number of clusterings in the combination
generate a random vector u, s.t. | ul=1
project all data points { Xk {y i} <{ux;},j=1...N
cluster projections {y iy mi) ~k-means({y ;})
end
combine clusterings via a consensus function: o ~{mi}, i=1..H
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return o // consensus partition

end

The important parameter is the number of clusters in the compongitibpar returned byk-
means algorithm at each iteration, i.e. the value dfthe value ok is too large then the partitions
{5} will overfit the data set which in turn may cause unreliabitifthe co-association values. Too
small a number of clusters i may not be enough to capture the true structure of data set. In
addition, if the number of clusterings in the combination is tooldimath the effective sample size
for the estimates of distances from co-association valualsasinsufficient, resulting in a larger
variance of the estimates. That is why the consensus functiead ba the co-association values
are more sensitive to the number of partitions in the combinatione(\@lH) than consensus

functions based on hypergraph algorithms.

6 Empirical study

The experiments were conducted with artificial and real-worldsg&s, where true natural clusters
are known, to validate both accuracy and robustness of consensu® vigixture model. We
explored the datasets using five different consensus functions.

6.1 Datasets. Table 2 summarizes the details of the datasets. Five tatdsgifferent nature have
been used in the experiments. “Biochemical’” and “Galaxy” detmae described in [1] and [40],

respectively.

Table 2: Characteristics of the datasets.

Dataset No. of  No. of No.of  Total no.Av. k-means
features classes points/class of points error (%)

Biochem. 7 2 2138-3404 5542 47.4
Galaxy 14 2 2082-2110 4192 211
2-spirals 2 2 100-100 200 43.5
Half-rings 2 2 100-300 400 25.6
Iris 4 3 50-50-50 150 15.1
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We evaluated the performance of the evidence accumulation clusaggorghms by matching the
detected and the known partitions of the datasets. The best possitiénmat clusters provides a
measure of performance expressed as the misassignment rdeteffoine the clustering error, one
needs to solve the correspondence problem between the labels of known el desters. The
optimal correspondence can be obtained using the Hungarian method for Im¥eigia bipartite

matching problem witlD(k®) complexity fork clusters.

6.2 Selection of Parameters and Algorithms. Accuracy of the QMI and EM consensus algorithms

has been compared to six other consensus functions:

1. CSPA for partitioning of hypergraphs induced from the co-associatioesidts complexity
is O(N?) that leads to severe computational limitations. We did not apmyatgorithm to
“Galaxy” [40] and “Biochemical” [1] data. For the same reasoa,did not use other co-
association methods, such as single-link clustering. The perforneéribese methods was
already analyzed in [14,15].

2. HGPA for hypergraph partitioning.

3.  MCLA, that modifies HGPA via extended set of hyperedge operations and additional
heuristics.

4. Consensus functions operated on the co-association matrix, but with three different
hierarchical clustering algorithms for obtaining the final partition, elgrsingle-linkage,
average-linkage, and complete-linkage.

First three methods (CSPA, HGPA and MCLA) were introduced ing#d]their code is available

at http://www.strehl.com.

The k-means algorithm was used as a method of generating thioparfor the combination.

Diversity of the partitions is ensured by the solutions obtaini afrandom initialization of the

algorithm. The following parameters of the clustering ensemble are &$pauaportant:

i. H-—the number of combined clusterings. We varied this value in the range [5..50].
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Figure5: “2 spirals” and “Half-rings” datasets are difficult for any cemtrbased clustering algorithms.

il. k—the number of clusters in the component clusterimgs.{, T} produced byk-means
algorithm was taken in the range [2..10].

iii. r—the number of hyperplanes used for obtaining clusterimgs { 14} by random splitting
algorithm.

Both, the EM and QMI algorithms are susceptible to the presehtecal minima of the
objective functions. To reduce the risk of convergence to a lowerygaalition, we used a simple
heuristic afforded by low computational complexities of thegerahms. The final partition was
picked from the results of three runs (with random initializaticesjording to the value of
objective function. The highest value of the likelihood function served asterion for the EM

algorithm and within-cluster variance is a criterion for the QMI atlgor.

6.3 Experiments with Complete Partitions. Only main results for each of the datasets are
presented in Tables 3-7 due to space limitations. The tables teporhean error rate (%) of
clustering combination from 10 independent runs for relatively large biacheand astronomical
data sets and from 20 runs for the other smaller datasets.

First observation is that none of the consensus functions is the absohner. Good
performance was achieved by different combination algorithnessadhe values of parametédrs
and H. The EM algorithm slightly outperforms other algorithms fosembles of smaller size,

while MCLA is superior when number of clusterings > 20. However, ensembles of very large

size are less important in practice. All co-associatiorhatst are usually unreliable with number of
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clusteringsH < 50 and this is where we position the proposed EM algorithm. Both, rieMRM|
consensus functions need to estimate at l¢#gk parameters. Therefore, accuracy degradation will
inevitably occur with an increase in the number of partitions whempke size is fixed. However,
there was no noticeable decrease in the accuracy of the Ekittadg in current experiments. The
EM algorithm also should benefit from the datasets of largedsieeto the improved reliability of
model parameter estimation.

A valuable property of the EM consensus algorithm is its fasvergence rate. Mixture model
parameter estimates nearly always converged in less thaterd@ions for all the datasets.
Moreover, pattern assignments were typically settled in 4-6 iterations.

Clustering combination accuracy also depends on the number of clvkterdhe ensemble
partitions, or more precisely, on its ratio to the target numbelusters, i.ek/M. For example, the
EM algorithm worked best witk=3 for Iris datasetk=3,4 for “Galaxy” dataset an=2 for “Half-
rings” data. These values @&fare equal or slightly greater than the number of clustersen th
combined partition. In contrast, accuracy of MCLA slightly improvath van increase in the
number of clusters in the ensemble. Figure 7 shows the error asctom of k for different
consensus functions for the galaxy data.

It is also interesting to note that, as expected, the avenameoéconsensus clustering was lower
than average error of tlkemeans clusterings in the ensemble (Table 2) viisrthosen to be equal
to the true number of clusters. Moreover, the clustering errornneotadby EM and MCLA
algorithms withk=4 for “Biochemistry” data [1] was the same as found by suped classifiers

applied to this dataset [45].

6.4 Experiments with Incomplete Partitions. This set of experiments focused on the dependence
of clustering accuracy on the number of patterns with missing cluster.|Asddgfore, an ensemble
of partitions was generated using thmeans algorithm. Then, we randomly deleted cluster labels

for a fixed number of patterns in each of the partitions. The EM neansealgorithm was used on
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Table 3: Mean error rate (%) for the “Galaxy” dataset.

Type of Consensus Function

H k EM QMI HGPA  MCLA 18

5 2 18.9 19.0 50.0 18.9 17

5 3 11.6 13.0 50.0 135 16 +

5 4 11.3 13.0 50.0 11.7 error ;5

5 5 13.9 18.0 50.0 14.3 rate 4

5 7 145 21.9 50.0 15.6 (%) 13

5 10 13.4 31.1 50.0 15.4

10 2 18.8 18.8 50.0 18.8 12

10 3 14.9 15.0 50.0 14.8 11

10 4 11.6 11.1 50.0 12.0 101

10 5 14.5 13.0 50.0 13.6 9 , ,

15 2 18.8 18.8 50.0 18.8

15 3 14.0 13.3 50.0 14.8 0 10 20 30 40 50
15 4 117 115 50.0 116 % of patterns with missing labels
15 5 12.9 11.5 50.0 12.9

20 2 18.8 18.9 50.0 18.8

20 3 12.8 11.7 50.0 14.3 Figure 6: Consensus clustering error rate as a function
20 4 11.0 10.8 50.0 11.5 of the number of missing labels in the ensemblétfer
20 5 16.2 12.1 50.0 12.3 Iris datasetH=5, k=3.

such an ensemble. The number of missing labels in each pantd®oraried between 10% to 50%
of the total number of patterns. The main results averaged over 10nddepeuns are reported in
Table 8 for “Galaxy” and “Biochemistry” datasets for varioiadues ofH andk. Also, a typical
dependence of error on the number of patterns with missing ddtews $or Iris data on Figure 6
(H=5, k=3).

One can note that combination accuracy decreases only insigmfit@ntBiochemistry” data
when up to 50% of labels are missing. This can be explained by theHevent accuracy for this
data, leaving little room for further degradation. For the “Gdlajdata, the accuracy drops by
almost 10% whek=3,4. However, when just 10-20% of the cluster labels are missimgthbee is
just a small change in accuracy. Also, with different valuds afe see different sensitivity of the
results to the missing labels. For example, WitB, the accuracy drops by only slightly more than

1%. Ensembles of larger siet=10 suffered less from missing data than ensembles ofisize

6.5 Results of Random Subspaces Algorithm
Let us start by demonstrating how the combination of clusterimgsdjected 1-dimensional
subspaces outperforms the combination of clusterings in the origintdlimehsional space. Fig.

8(a) shows the learning dynamics for Iris data kel using average-link consensus function based
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on co-association values. Note that the number of clusters iroédod componentsry, ..., Ti} is
set tok=4, and is different from the true number of clusters (=3). Cleadgh individual clustering
in full multidimensional space is much stronger than any 1-dinitipartand therefore with only a
small number of partitionsH<50) the combination of weaker partitions is not yet effective.
However, for larger numbers of combined partitiors>%0), 1-dim projections together better
reveal the true structure of the data. It is quite unexpedtezk thek-means algorithm wittk=3
makes, on average, 19 mistakes in original 4-dim space and 25 mistakésn random subspace.
Moreover, clustering in the projected subspacd tsnes faster than in multidimensional space.
Although, the cost of computing a consensus partiethe same in both cases.

The results regarding the impact of valudk afe reported in Fig. 8(b), which shows that there is
a critical value ofk for the Iris data set. This occurs when the average-linkage-a$smxiation
distances is used as a consensus function. In this case th&salsenot adequate to separate the
true clusters. The role of the consensus function is illustratedyir@FThree consensus functions
are compared on the Iris data set. They all use similafitissthe co-association matrix but cluster
the objects using three different criterion functions, namelylesiink, average link and complete
link. It is clear that the combination using single-link perforngmnisicantly worse than the other
two consensus functions. This is expected since the three dladgesdata have hyperellipsoidal
shape. More results were obtained on “half-rings” and “2 spiral sets in Fig. 5, which are
traditionally difficult for any partitional centroid-based algbm. Table 9 reports the error rates for
the “2 spirals” data using seven different consensus functions, edifferumber of component
partitions H = [5..500] and different number of clusters in each compdénen?,4,10. We omit
similar results for “half-rings” data set under the sanxpeemental conditions and some
intermediate values df due to space limitations. As we see, the single-link consdusagon
performed the best and was able to identify both the ‘half-ringstels as well as spirals. In
contrast to the results for Iris data, average-link and compidtednsensus were not suitable for

these data sets.
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Table 4: Mean error rate (%) for the “Biochemistry” datase 190
17.0 |
Type of Consensus Function [ 150 |
H K EM QMI  MCLA o
5 2 448 44.8 44.8 ® 130
5 3 43.2 48.8 44.7 5 110l
5 4 42.0 45.6 42.7 =
5 5 42.7 443 46.3 90 |
10 2 45.0 45.1 45.1
10 3 44.3 45.4 40.2 o
10 4 39.3 45.1 37.3 5.0 ]
10 5 40.6 45.0 41.2 1 2 3 4 5 6
20 2 45.1 45.2 45.1
20 3 46.6 47.4 42.0 k - number of clusters
;8 g ig'é ii'? gg'g Figure 7: Consensus error as a function of the number
30 5 45.3 453 453 of clusters in th_e contributing partitions for Gajadata
30 3 471 48.3 46.8 and ensemble siz¢=20.
30 4 37.3 42.3 42.8 . 0 ;
20 c 399 429 384 Table 7: Mearerrorrate (%) for the Iris dataset.
50 2 45.2 45.3 45.2 Type of Consensus Function
0 3 46.9 483 446 H Kk EM QM CSPA HGPA MCLA
S0 4 40.1 39.7 42.8 5 3 11.0 147 112 414 109
50 5 39.4 38.1 421 10 3 108 108 113 382 109
15 3 109 119 9.8 428 111
20 3 109 145 9.8 391 109
30 3 109 128 7.9 434 113
Table 5: Mean error rate (%) for the “Half-rings” dataset. 40 3 11.0 124 7.7 419 111
_ 50 3 109 138 7.9 427 112
Type of Consensus Function
H k EM QMI  CSPA HGPA MCLA
2 g gi:g gg:g ggg ig:g ggi Table 8: Clustering error rate of EM algorithm as a
10 2 26.7 33.2 28.6 50.0 23.7 function of the number of missing labels for theya
10 3 335 39.7 24.9 26.0 24.2
30 2 269 406 262 500 260 datase!
30 3 29.3 35.9 26.2 275 26.2 Missing ~ "Galaxy" “Biochem.”
50 2 27.2 32.3 29.5 50.0 211 H K labels (%) error (%) error (%)
50 3 28.8 35.3 25.0 24.8 24.6 5 > 10 18.81 2518
5 2 20 18.94 44.73
5 2 30 19.05 45.08
5 2 40 19.44 45.64
5 2 50 19.86 46.23
Table 6: Mean error rate (%) for the “2-spirals” dataset. 5 3 10 12.95 43.79
. 5 3 20 13.78 43.89
Type of Consensus Function 5 3 30 14.92 4567
H k EM QMI  CSPA HGPA MCLA 5 3 40 19.58 47.88
5 2 435 436 439 500 438 5 3 50 2331 48.41
5 3 411 413 399 495 405 5 4 10 11.56 43.10
5 4 20 11.98 43.59
5 5 41.2 41.0 40.0 43.0 40.0 5 4 30 1436 44.50
5 7 45.9 45.4 45.4 42.4 43.7 5 a 20 1734 4512
5 10 47.3 454 47.7 46.4 43.9 5 4 50 24.47 45.62
10 2 43.4 437 44.0 50.0 43.9 10 2 10 18.87 45.14
10 3 36.9 40.0 39.0 49.2 417 10 2 20 18.85 45.26
10 5 38.6 39.4 38.3 40.6 38.9 10 2 30 18.86 45.28
10 7 467 467 462 430 457 10 2 40 18.93 45.13
10 10 467 456 477 471 424 18 g ig 12-22 ji-g?
20 2 433 43.6 438 50.0 43.9 10 3 >0 14.46 45 20
20 3 407 402 371 493 400 10 3 20 14.69 4791
20 5 38.6 39.5 38.2 40.0 38.1 10 3 40 14.40 47.21
20 7 45.9 47.6 46.7 44.4 44.2 10 3 50 15.65 46.92
20 10 48.2 47.2 48.7 47.3 42.2 10 4 10 11.06 39.15
10 4 20 11.17 37.81
10 4 30 11.32 40.41
10 4 40 15.07 37.78
10 4 50 16.46 41.56
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Figure 8. Performance of random subspaces algorithm on Iris data. (a) Nuwhberrors by the

combination ofk-means partitionskE4) in multidimensional space and projected to 1-d subspaces.
Average-link consensus function was used. (b) Accuracy of piajeatgorithm as a function of the
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Figure 9. Dependence of accuracy of the projection algorithm on the type of consensionfiordtis data

set.k=3.

This observation supports the idea that the accuracy of the consensusnfubased on co-

association values is sensitive to the choice of data set. Inafjem® can expect that average-link

(single-link) consensus will be appropriate if standard averagefimigle-link) agglomerative

clustering works well for the data and vice versa. Moreover, none of the {fregtaph consensus

functions could find a correct combined partition. This is somewhat isugprgiven that the

hypergraph algorithms performed well on the Iris data. However, thddta is far less problematic
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Table9. “2 Spirals” data experiments. Average error rate (% over 20 runs) of clusterirignation using the
random 1-d projections algorithm with different number of componddisijn combination, different
resolutions of componenksand seven types of consensus functions.

Type of Consensus Function

H, # of k,# of cluster: Co-association methods Hypergraph methods Median partition
componentsn component Single Average Complete CSPA HGPA MCLA QMI
link link link

5 2 47.8 45.0 44.9 41.7 50.0 40.8 40.0
10 2 48.0 44.3 43.1 41.6 50.0 40.4 40.0
50 2 44.2 43.5 41.6 43.1 50.0 41.1 39.3
100 2 46.2 43.9 42.1 46.2 50.0 43.2 42.6
200 2 44.5 42.5 41.9 43.3 50.0 40.1 40.7
500 2 41.6 43.5 39.6 46.4 50.0 44.0 43.3
5 4 48.6 45.9 46.8 43.4 449 43.8 447
10 4 47.4 47.5 48.7 44.1 43.8 42.6 44.0
50 4 35.2 48.5 46.2 44.9 39.9 42.3 44.2
100 4 29.5 49.0 47.0 44.2 39.2 39.5 42.9
200 4 27.8 49.2 46.0 47.7 38.3 37.2 39.0
500 4 4.4 49.5 44.0 48.1 39.4 45.0 43.4
5 10 48.0 42.6 45.3 42.9 42.4 42.8 45.3
10 10 447 44.9 44.7 42.4 42.6 42.8 44.2
50 10 9.4 47.0 44.3 43.5 42.4 42.2 42.8
100 10 0.9 46.8 47.4 41.8 41.1 42.3 44.2
200 10 0.0 47.0 45.8 42.4 38.9 445 40.0
500 10 0.0 47.3 43.4 43.3 35.2 44.8 37.4

because one of the clusters is linearly separable, and the tabhsescare well described as a
mixture of two multivariate normal distributions.

Perfect separation of natural clusters was achieved witarge Inumber of partitions in
clustering combinationH{ > 200) and for values &> 3 for “half-rings” and “2 spirals”. Again, it
indicates that for each problem there is a critical valueesdlution of component partitions that
guarantees good clustering combination. This further supports the wénedfand Jain [15,16]
who showed that a random number of clusters in each partition erssesater diversity of
components. We see that the minimal required value of resolution forstiata isk=3, for “half-
rings” it isk=2 and for “2 spirals” it i%=4. In general, the value &fshould be larger than the true
number of clusters.

The number of partitions affects the relative performance afdhsensus functions. With large
values ofH (>100), co-association consensus becomes stronger, while with smal wdH it is

preferable to use hypergraph algorithm&-oneans median partition algorithm.
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Figure 10. Number of misassigned points by random hyperplanes algorithm in clustetihgpifal”
data: (a) for different number of hyperplanes (b) for different conséasasons.

It is interesting to compare the combined clustering accurétytiae accuracy of some of the
classical clustering algorithms. For example, for Iris daeaEM algorithm has the best average
error rate of 6.17%. In our experiments, the best performers fodats were the hypergraph
methods, with an accuracy as low as 3%, \wth 200 andk > 5. For the “half-rings” data, the best
standard result is 5.25% error by the average-link algorithm, welecombined clustering using
the single-link co-association algorithm achieved a 0% errdr kit 200. Also, for the “2 spirals”
data the clustering combination achieves 0% error, the same @gudgr single-link clustering.
Hence, with an appropriate choice of consensus function, clustemnmgjration outperforms many
standard clustering algorithms. However, the choice of a good cosstemgtion is similar to the
problem of choice of a good conventional clustering algorithm. Perhaps @jterdative to
guessing the right consensus function is simply to run all thiEabkeaconsensus functions and then
pick the final consensus partition according to the partition ughitgria in Eq. (4) or EQ. (6). We
hope to address this in future applications of the method.

Another set of experiments was performed on the “Galaxydsgatwhich has significantly
larger number of sampléé= 4192 and number of featurdss 14. The task is to separate patterns
of galaxies from stars. We used most difficult set of “faglijects from the original data [40].
True labels for the objects were provided manually by experts. Evargh computation of

component partitions id times faster due to projection, the overall computational eftamt be
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dominated by the complexity of computing the consensus partition. Quad@tiputational
complexity effectively prohibits co-association based consensusdoadtiom being used on large
data sets, due t@(N®) complexity of building co-association matrix fiirobjects. Therefore, for
large datasets we do not use three hierarchical agglomeratikedaeas well as CSPA hypergraph
algorithm by Strehl and Ghosh. TRaneans algorithm for median partition via QMI is the most
attractive in terms of speed with a complex@®(kNH). In addition, we also used two other
hypergraph based consensus functions, since they worked fast ircgrdetble 10 reports the
achieved error rate using these consensus functions. We alsl litmit number of components in
the combination té1=20 because of the large data size. The results show-thedns algorithm for
median partition has the best performance. HGPA did not work wetbdtgebias toward balanced
cluster sizes, as it also happened in the case of the lihgdrdata set. We see that the accuracy
improves when the number of partitions and clusters increases.

It is important to note that the average error rate of the atdkeimeans algorithm for the
“Galaxy” data is about 20%, and the best known solution has an ateopfr 18.6%. It is quite
noticeable thak-means median partition algorithm and MCLA obtained much bettatigantvith
an error rate of only around 13% fo¥3.

6.6 Results of Random Splitting Algorithm The same set of experiments was performed
with clustering combination via splits by random hyperplanes asctios 5.1. Here we would like
to emphasize only the most interesting observations, becauseul® iresnany details are close to
what have been obtained by using random subspaces. There is a little differenoes iof tabsolute
performance: the random hyperplanes algorithm is slightlyrbattéhalf-rings” data using single-
link consensus function, about the same on “2 spirals”, and worse on Iris data set.

It is important to distinguish the number of clusters the component partition and the number
of hyperplanes, because hyperplanes intersect randomly and form varying numblestsrs. For

example, 3 lines can create anywhere between 4 and 7 distinct regions in a plane.

31



Table 10.Average error rate (in %, over 20 runs) of combination clugieusing random projections

algorithm on “Galaxy/star” data set.

Type of Consensus

H,#of k,#ofcl Hypergraph methods  Median partition
component component HGPA  MCLA QMI
5 2 49.7 20.0 20.4
10 2 49.7 235 21.1
20 2 49.7 21.0 18.0
5 3 49.7 22.0 21.7
10 3 49.7 17.7 13.7
20 3 49.7 15.8 13.3
5 4 49.7 19.7 16.7
10 4 49.7 16.9 15.5
20 4 49.7 14.1 13.2
5 5 49.7 22.0 22.5
10 5 49.7 17.7 17.4
20 5 49.6 15.2 12.9

The results for the “2 spirals” data set also demonstrateotieergence of consensus clustering
to a perfect solution wheld reaches 500 and for the valueg of 2,...,5. See Fig. 10(a). A larger
number of hyperplanes<5) improves the convergence. Fig 10(b) illustrates that the clodice
consensus function is crucial for successful clustering. In theofd@espirals” data, only single-

link consensus is able to find correct clusters.

7 Conclusion and Future Work

This study extended previous research on clustering ensemblesenal s@spects. First, we
have introduced a unified representation for multiple clusterings anuiliaed the corresponding
categorical clustering problem. Second, we have proposed a solutionpmitiem of clustering
combination. A consensus clustering is derived from a solution of akemam likelihood problem
for a finite mixture model of the ensemble of partitions. Ensensbi@modeled as a mixture of
multivariate multinomial distributions in the space of clusteelebMaximum likelihood problem
is effectively solved using the EM algorithm. The EM-based @osiss function is also capable of
dealing with incomplete contributing partitions. Third, it is shown #medther consensus function
can be related to classical intra-class variance aiteusing the generalized mutual information
definition. Consensus solution based on quadratic mutual information canciendif found by k-
means algorithm in the space of specially transformed labeterinental results indicate good

performance of the approach for several datasets and favorabpartson with other consensus
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functions. Among the advantages of these algorithms are theicdoyutational complexity and
well-grounded statistical model.

We have also considered combining weak clustering algorithms thatateseprojections and
random data splits. A simple explanatory model is offered fobémavior of combination of such
weak components. We have analyzed combination accuracy as a functiorarobteas, which
control the power and resolution of component partitions as well deaimeng dynamics vs. the
number of clusterings involved. Empirical study compared the effeetsgeof several consensus
functions applied to weak partitions.

It is interesting to continue the study of clustering combinatiogeveral directions: 1) design
of effective search heuristics for consensus functions, 2) mores@raad quantifiable notion of
weak clustering, and 3) an improved understanding of the effect of compeselution for overall
performance. This research can be extended in order to take imenacwn-independence of
partitions in the ensemble. The consensus function presented hquévedent to a certain kind of
Latent Class Analysis, which offers established statistaggbroaches to measure and use
dependencies (at least pair-wise) between variables. lfdsrderesting to consider a combination
of partitions of different quality. In this case one needs to deaetmmsensus function that weights
the contributions of different partitions in proportional to their stileng/e hope to address these

issues in our future work.
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