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Abstract. Clustering ensembles have emerged as a powerful method for improving both the 

robustness as well as the stability of unsupervised classification solutions. However, finding a 

consensus clustering from multiple partitions is a difficult problem that can be approached from 

graph-based, combinatorial or statistical perspectives. This study extends previous research on 

clustering ensembles in several respects. First, we introduce a unified representation for multiple 

clusterings and formulate the corresponding categorical clustering problem. Second, we propose a 

probabilistic model of consensus using a finite mixture of multinomial distributions in a space of 

clusterings. A combined partition is found as a solution to the corresponding maximum likelihood 

problem using the EM algorithm. Third, we define a new consensus function that is related to the 

classical intra-class variance criterion using the generalized mutual information definition. Finally, 

we demonstrate the efficacy of combining partitions generated by weak clustering algorithms that 

use data projections and random data splits. A simple explanatory model is offered for the behavior 

of combinations of such weak clustering components. Combination accuracy is analyzed as a 

function of several parameters that control the power and resolution of component partitions as well 

as the number of partitions. We also analyze clustering ensembles with incomplete information and 

the effect of missing cluster labels on the quality of overall consensus. Experimental results 

demonstrate the effectiveness of the proposed methods on several real-world datasets. 
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1   Introduction 

In contrast to supervised classification, clustering is inherently an ill-posed problem, whose solution 

violates at least one of the common assumptions about scale-invariance, richness, and cluster 

consistency [33]. Different clustering solutions may seem equally plausible without a priori 

knowledge about the underlying data distributions. Every clustering algorithm implicitly or 

explicitly assumes a certain data model, and it may produce erroneous or meaningless results when 

these assumptions are not satisfied by the sample data. Thus the availability of prior information 

about the data domain is crucial for successful clustering, though such information can be hard to 

obtain, even from experts. Identification of relevant subspaces [2] or visualization [24] may help to 

establish the sample data’s conformity to the underlying distributions or, at least, to the proper 

number of clusters.  

The exploratory nature of clustering tasks demands efficient methods that would benefit from 

combining the strengths of many individual clustering algorithms. This is the focus of research on 

clustering ensembles, seeking a combination of multiple partitions that provides improved overall 

clustering of the given data. Clustering ensembles can go beyond what is typically achieved by a 

single clustering algorithm in several respects: 

� Robustness. Better average performance across the domains and datasets. 

� Novelty. Finding a combined solution unattainable by any single clustering algorithm.  

� Stability and confidence estimation. Clustering solutions with lower sensitivity to noise, outliers 

or sampling variations. Clustering uncertainty can be assessed from ensemble distributions.  

� Parallelization and Scalability. Parallel clustering of data subsets with subsequent combination 

of results. Ability to integrate solutions from multiple distributed sources of data or attributes 

(features). 

Clustering ensembles can also be used in multiobjective clustering as a compromise between 

individual clusterings with conflicting objective functions. Fusion of clusterings using multiple 
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sources of data or features becomes increasingly important in distributed data mining, e.g., see 

review in [41]. Several recent independent studies [10, 12, 14, 15, 43, 47] have pioneered clustering 

ensembles as a new branch in the conventional taxonomy of clustering algorithms [26, 27]. Please 

see the Appendix for detailed review of the related work, including [7, 11, 16, 19, 28, 31, 35].  

The problem of clustering combination can be defined generally as follows: given multiple 

clusterings of the data set, find a combined clustering with better quality. While the problem of 

clustering combination bears some traits of a classical clustering problem, it also has three major 

issues which are specific to combination design: 

1. Consensus function: How to combine different clusterings? How to resolve the label 

correspondence problem? How to ensure symmetrical and unbiased consensus with respect to 

all the component partitions? 

2. Diversity of clustering: How to generate different partitions? What is the source of diversity in 

the components? 

3. Strength of constituents/components: How “weak” could each input partition be? What is the 

minimal complexity of component clusterings to ensure a successful combination? 

Similar questions have already been addressed in the framework of multiple classifier systems. 

Combining results from many supervised classifiers is an active research area (Quinlan 96, Breiman 

98) and it provides the main motivation for clusterings combination. However, it is not possible to 

mechanically apply the combination algorithms from classification (supervised) domain to 

clustering (unsupervised) domain. Indeed, no labeled training data is available in clustering; 

therefore the ground truth feedback necessary for boosting the overall accuracy cannot be used. In 

addition, different clusterings may produce incompatible data labelings, resulting in intractable 

correspondence problems, especially when the numbers of clusters are different. Still, the 

supervised classifier combination demonstrates, in principle, how multiple solutions reduce the 

variance component of the expected error rate and increase the robustness of the solution. 
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From the supervised case we also learn that the proper combination of weak classifiers [32, 25, 

18, 6] may achieve arbitrarily low error rates on training data, as well as reduce the predictive error. 

One can expect that using many simple, but computationally inexpensive components will be 

preferred to combining clusterings obtained by sophisticated, but computationally involved 

algorithms.  

This paper further advances ensemble methods in several aspects, namely, design of new 

effective consensus functions, development of new partition generation mechanisms and study of 

the resulting clustering accuracy. 

1.1   Our Contribution  

We offer a representation of multiple clusterings as a set of new attributes characterizing the data 

items. Such a view directly leads to a formulation of the combination problem as a categorical 

clustering problem in the space of these attributes, or, in other terms, a median partition problem. 

Median partition can be viewed as the best summary of the given input partitions. As an 

optimization problem, median partition is NP-complete [3], with a continuum of heuristics for an 

approximate solution.  

This work focuses on the primary problem of clustering ensembles, namely the consensus 

function, which creates the combined clustering. We show how median partition is related to the 

classical intra-class variance criterion when generalized mutual information is used as the 

evaluation function. Consensus function based on quadratic mutual information (QMI) is proposed 

and reduced to the k-means clustering in the space of specially transformed cluster labels. 

We also propose a new fusion method for unsupervised decisions that is based on a probability 

model of the consensus partition in the space of contributing clusters. The consensus partition is 

found as a solution to the maximum likelihood problem for a given clustering ensemble. The 

likelihood function of an ensemble is optimized with respect to the parameters of a finite mixture 

distribution. Each component in this distribution corresponds to a cluster in the target consensus 
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partition, and is assumed to be a multivariate multinomial distribution. The maximum likelihood 

problem is solved using the EM algorithm [8].  

There are several advantages to QMI and EM consensus functions. These include: (i) complete 

avoidance of solving the label correspondence problem, (ii) low computational complexity, and (iii) 

ability to handle missing data, i.e. missing cluster labels for certain patterns in the ensemble (for 

example, when bootstrap method is used to generate the ensemble). 

Another goal of our work is to adopt weak clustering algorithms and combine their outputs. 

Vaguely defined, a weak clustering algorithm produces a partition, which is only slightly better than 

a random partition of the data. We propose two different weak clustering algorithms as the 

component generation mechanisms: 

1. Clustering of random 1-dimensional projections of multidimensional data. This can be 

generalized to clustering in any random subspace of the original data space.  

2. Clustering by splitting the data using a number of random hyperplanes. For example, if only 

one hyperplane is used then data is split into two groups. 

Finally, this paper compares the performance of different consensus functions. We have 

investigated the performance of a family of consensus functions based on categorical clustering 

including the co-association based hierarchical methods [15, 16, 17], hypergraph algorithms [47, 29, 

30] and our new consensus functions. Combination accuracy is analyzed as a function of the 

number and the resolution of the clustering components. In addition, we study clustering 

performance when some cluster labels are missing, which is often encountered in the distributed 

data or re-sampling scenarios. 

2   Representation of Multiple Partitions 

Combination of multiple partitions can be viewed as a partitioning task itself. Typically, each 

partition in the combination is represented as a set of labels assigned by a clustering algorithm. The 

combined partition is obtained as a result of yet another clustering algorithm whose inputs are the 
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cluster labels of the contributing partitions. We will assume that the labels are nominal values. In 

general, the clusterings can be “soft”, i.e., described by the real values indicating the degree of 

pattern membership in each cluster in a partition. We consider only “hard” partitions below, noting 

however, that combination of “soft” partitions can be solved by numerous clustering algorithms and 

does not appear to be more complex.  

Suppose we are given a set of N data points X = {x1,…, xN} and a set of H partitions 

Π={ π1,…, πH} of objects in X. Different partitions of X return a set of labels for each point xi, 

i=1,…, N: 

{ })(),...,(),( 21 iHiii xxxx πππ→ . (1) 

Here, H different clusterings are indicated and )( ij xπ  denotes a label assigned to xi by the j-th 

algorithm. No assumption is made about the correspondence between the labels produced by 

different clustering algorithms. Also no assumptions are needed at the moment about the data input: 

it could be represented in a non-metric space or as an N×N dissimilarity matrix. For simplicity, we 

use the notation )( ijijy xπ=  or yi = ππππ(xi). The problem of clustering combination is to find a new 

partition πC of data X that summarizes the information from the gathered partitions Π. Our main 

goal is to construct a consensus partition without the assistance of the original patterns in X, but 

only from their labels Y delivered by the contributing clustering algorithms. Thus, such potentially 

important issues as the underlying structure of both the partitions and data are ignored for the sake 

of a solution to the unsupervised consensus problem. We emphasize that a space of new features is 

induced by the set Π. One can view each component partition πi as a new feature with categorical 

values, i.e. cluster labels. The values assumed by the i-th new feature are simply the cluster labels 

from partition πi. Therefore, membership of an object x in different partitions is treated as a new 

feature vector y = ππππ(x), an H-tuple. In this case, one can consider partition πj(x) as a feature 

extraction function. Combination of clusterings becomes equivalent to the problem of clustering of 

H-tuples if we use only the existing clusterings {π1,…, πH}, without the original features of data X. 



 
6 

Hence the problem of combining partitions can be transformed to a categorical clustering problem. 

Such a view gives insight into the properties of the expected combination, which can be inferred 

through various statistical and information-theoretic techniques. In particular, one can estimate the 

sensitivity of the combination to the correlation of components (features) as well as analyze various 

sample size issues. Perhaps the main advantage of this representation is that it facilitates the use of 

known algorithms for categorical clustering [37, 48] and allows one to design new consensus 

heuristics in a transparent way. The extended representation of data X can be illustrated by a table 

with N rows and (d+H) columns: 

The consensus clustering is found as a partition πC of a set of vectors Y = { yi} that directly 

translates to the partition of the underlying data points {xi}.  

3   A Mixture Model of Consensus 

Our approach to the consensus problem is based on a finite mixture model for the probability of the 

cluster labels y=ππππ(x) of the pattern/object x. The main assumption is that the labels yi are modeled 

as random variables drawn from a probability distribution described as a mixture of multivariate 

component densities: 

∑
=

=Θ
M

m
mimmi PP

1

)|()|( θyy α , (2) 

where each component is parametrized by θθθθm. The M components in the mixture are identified with 

the clusters of the consensus partition πC. The mixing coefficients αm correspond to the prior 

probabilities of the clusters. In this model, data points {yi} are presumed to be generated in two 

 ππππ 1 … ππππ H 
x 1 x 11 … x 1d π 1 ( x 1 ) … π H ( x 1 ) 
x 2 x 21 … x 2d π 1 ( x 2 ) … π H ( x 2 ) 

… … … … … … … 
x N x N1 … x Nd π 1 ( x N ) … π H ( x N ) Original d  features "New" H  features 
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steps: first, by drawing a component according to the probability mass function αm, and then 

sampling a point from the distribution Pm(y|θm). All the data Y N
ii 1}{ == y  are assumed to be 

independent and identically distributed. This allows one to represent the log likelihood function for 

the parameters Θ={ α1,…, αM, θθθθ1,…, θθθθM } given the data set Y as: 

).|(log)|(log)|log
1 11

mim

N

i

M

m
m

N

i
i PP θyyY ∑ ∑∏

= ==

=Θ=Θ α(L   (3) 

The objective of consensus clustering is now formulated as a maximum likelihood estimation 

problem.  To find the best fitting mixture density for a given data Y, we must maximize the 

likelihood function with respect to the unknown parameters Θ: 

)|logmaxarg YΘ=Θ
Θ

∗ (L . (4) 

The next important step is to specify the model of component-conditional densities Pm(y|θm). 

Note, that the original problem of clustering in the space of data X has been transformed, with the 

help of multiple clustering algorithms, to a space of new multivariate features y = ππππ(x).  To make 

the problem more tractable, a conditional independence assumption is made for the components of 

vector yi, namely that the conditional probability of yi can be represented as the following product: 

∏
=

=
H

j

j
mij

j
mmim yPP

1

)()( )|()|( θθy . (5) 

To motivate this, one can note that even if the different clustering algorithms (indexed by j) are not 

truly independent, the approximation by product in Eq. (5) can be justified by the excellent 

performance of naive Bayes classifiers in discrete domains [34]. Our ultimate goal is to make a 

discrete label assignment to the data in X through an indirect route of density estimation of Y. The 

assignments of patterns to the clusters in πC are much less sensitive to the conditional independence 

approximation than the estimated values of probabilities )|( ΘiP y , as supported by the analysis of 

naïve Bayes classifier in [9].  
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The last ingredient of the mixture model is the choice of a probability density )|( )()( j
mij

j
m yP θ  for 

the components of the vectors yi. Since the variables yij take on nominal values from a set of cluster 

labels in the partition πj, it is natural to view them as the outcome of a multinomial trial: 

( )
( , )( ) ( )

1

( | ) ( ) ij
K j

y kj j
m ij m jm

k

P y k
δϑ

=

= ∏θ  . (6) 

Here, without the loss of generality, the labels of the clusters in πj are chosen to be integers in 

{1,…,K(j)}. To clarify the notation, note that the probabilities of the outcomes are defined as )(kjmϑ  

and the product is over all the possible values of yij labels of the partition πj. Also, the probabilities 

sum up to one:  

},...,1{},,...,1{,1)(
)(

1

MmHjk
jK

k
jm ∈∀∈∀=∑

=

ϑ . (7) 

For example, if the j-th partition has only two clusters, and possible labels are 0 and 1, then Eq. (5) 

can be simplified as:  

y
jm

y
jm

j
m

j
m yP −−= 1)()( )1()|( ϑϑθ . (8) 

The maximum likelihood problem in Eq. (3) generally cannot be solved in a closed form when all 

the parameters Θ={ α1,…, αM, θθθθ1,…, θθθθM} are unknown. However, the likelihood function in Eq. (2) 

can be optimized using the EM algorithm. In order to adopt the EM algorithm, we hypothesize the 

existence of hidden data Z and the likelihood of complete data (Y, Z). If the value of zi is known 

then one could immediately tell which of the M mixture components was used to generate the point 

yi. The detailed derivation of the EM solution to the mixture model with multivariate, multinomial 

components is given in the Appendix. Here we give only the equations for the E- and M-steps 

which are repeated at each iteration of the algorithm: 

( )

( )∑ ∏∏

∏∏

= = =

= =

′′

′′
=

M

n

H

j

jK
ij

jnn

H

j

jK
ij

jmm

im

k

k

ky

ky

k

k

zE

1 1

)(

1

1

)(

1

),(

),(

)(

)(

][
δ

δ

ϑα

ϑα
. 

(9) 
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The solution to the consensus clustering problem is obtained by a simple inspection of the 

expected values of the variables E[zim], due to the fact that E[zim] represents the probability that the 

pattern yi was generated by the m-th mixture component. Once convergence is achieved, a pattern yi 

is assigned to the component which has the largest value for the hidden label zi.  

It is instructive to consider a simple example of an ensemble. Figure 1 shows four 2-cluster 

partitions of 12 two-dimensional data points.  Correspondence problem is emphasized by different 

label systems used by the partitions. Table 1 shows the expected values of latent variables after 6 

iterations of the EM algorithm and the resulting consensus clustering. In fact, a stable combination 

appears as early as the third iteration, and it corresponds to the true underlying structure of the data. 

Our mixture model of consensus admits generalization for clustering ensembles with incomplete 

partitions. Such partitions can appear as a result of clustering of subsamples or resampling of a 

dataset. For example, a partition of a bootstrap sample only provides labels for the selected points. 

Therefore, the ensemble of such partitions is represented by a set of vectors of cluster labels with 

potentially missing components. Moreover, different vectors of cluster labels are likely to miss 

different components. Incomplete information can also arise when some clustering algorithms do 

not assign outliers to any of the clusters.  Different clusterings in the diverse ensemble can consider 

the same point xi as an outlier or otherwise, that results in missing components in the vector yi. 
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Yet another scenario leading to missing information can occur in clustering combination of 

distributed data or ensemble of clusterings of non-identical replicas of a dataset. 

It is possible to apply the EM algorithm in the case of missing data [20], namely missing cluster 

labels for some of the data points. In these situations, each vector yi in Y can be split into observed 

and missing components yi = (yi
obs, yi

mis). Incorporation of a missing data leads to a slight 
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Figure 1: Four possible partitions of 12 data points into 2 clusters. Different partitions use different sets of 
labels. 

Table 1: Clustering ensemble and consensus solution

π1 π2 π3 π4 E [zi1] E [zi2] Consensus
y1 2 B X β 0.999 0.001 1
y2 2 A X α 0.997 0.003 1
y3 2 A Y β 0.943 0.057 1
y4 2 B X β 0.999 0.001 1
y5 1 A X β 0.999 0.001 1
y6 2 A Y β 0.943 0.057 1
y7 2 B Y α 0.124 0.876 2
y8 1 B Y α 0.019 0.981 2
y9 1 B Y β 0.260 0.740 2
y10 1 A Y α 0.115 0.885 2
y11 2 B Y α 0.124 0.876 2

y12 1 B Y α 0.019 0.981 2
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modification of the computation of E and M steps. First, the expected values E[zim |yi
obs, Θ′ ] are 

now inferred from the observed components of vector yi, i.e. the products in Eq. (9) are taken over 

known labels:
1 :

.
H

obsj j y=
→∏ ∏  Additionally, one must compute the expected values E[zim yi

mis| yi
obs,Θ′ ] 

and substitute them, as well as E[zim | yi
obs, Θ′ ], in the M-step for re-estimation of parameters 

)(kjmϑ . More details on handling missing data can be found in [20]. 

Though data with missing cluster labels can be obtained in different ways, we analyze only the 

case when components of yi are missing completely at random [46]. It means that the probability of 

a component to be missing does not depend on other observed or unobserved variables. Note, that 

the outcome of clustering of data subsamples (e.g., bootstrap) is different from clustering the entire 

data set and then deleting a random subset of labels. However, our goal is to present a consensus 

function for general settings. We expect that experimental results for ensembles with missing labels 

are applicable, at least qualitatively, even for a combination of bootstrap clusterings.  

The proposed ensemble clustering based on mixture model consensus algorithm is summarized 

below. Note that any clustering algorithm can be used to generate ensemble instead of the k-means 

algorithm shown in this pseudocode: 

begin 

for i=1 to H   //  H - number of clusterings 

cluster a dataset X: π ← k-means(X) 

add partition π to the ensemble Π= {Π,π} 

end 

initialize model parameters Θ ={α1,…, αM, θθθθ1,…, θθθθM } 

do until convergence criterion is satisfied 

compute expected values E[zim], i=1..N, m=1..M 

compute E[zim yi
mis] for missing data (if any) 

re-estimate parameters )(kjmϑ , j=1..H, m=1..M, ∀k 

end  

πC (xi) = index of component of zi with the largest expected value,  i=1..N 
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return πC  // consensus partition 

end  

The value of M, number of components in the mixture, deserves a separate discussion that is 

beyond the scope of this paper. Here, we assume that the target number of clusters is predetermined. 

It should be noted, however, that mixture model in unsupervised classification greatly facilitates 

estimation of the true number of clusters [13]. Maximum likelihood formulation of the problem 

specifically allows us to estimate M by using additional objective functions during the inference, 

such as the minimum description length of the model. In addition, the proposed consensus 

algorithm can be viewed as a version of Latent Class Analysis (e.g. see [4]), which has rigorous 

statistical means for quantifying plausibility of a candidate mixture model. 

Whereas the finite mixture model may not be valid for the patterns in the original space (the 

initial representation), this model more naturally explains the separation of groups of patterns in the 

space of “extracted” features (labels generated by the partitions). It is somewhat reminiscent of 

classification approaches based on kernel methods which rely on linear discriminant functions in the 

transformed space. For example, Support Vector Clustering [5] seeks spherical clusters after the 

kernel transformation that corresponds to more complex cluster shapes in the original pattern space. 

 

4  Information-Theoretic Consensus of Clusterings 
 
Another candidate consensus function is based on the notion of median partition. A median partition 

σ is the best summary of existing partitions in Π. In contrast to the co-association approach, median 

partition is derived from estimates of similarities between attributes1 (i.e., partitions in Π), rather 

than from similarities between objects. A well-known example of this approach is implemented in 

the COBWEB algorithm in the context of conceptual clustering [48]. COBWEB clustering criterion 

estimates the partition utility, which is the sum of category utility functions introduced by Gluck 

and Corter [21]. In our terms, the category utility function U(σ, πi) evaluates the quality of a 

                                                 
1 Here “attributes” (features) refer to the partitions of an ensemble, while the objects refer the 

original data points. 
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candidate median partition πC ={C1,…,CK} against some other partition πi = {Li
1,…, Li

K(i)}, with 

labels Li
j for j-th cluster: 

( ) ( )
2 2

1 1 1

( , ) ( ) ( | ) ( )
K i K iK

i i
C i r j r j

r j j

U p C p L C p Lπ π
= = =

= −∑ ∑ ∑ , (12) 

with the following notations: p(Cr) = |Cr| / N, p(Li
j) = |Li

j| / N, and ||/||)|( rr
i
jr

i
j CCLCLp ∩= . 

The function U(πC, πi) assesses the agreement between two partitions as the difference between the 

expected number of labels of partition πi that can be correctly predicted both with the knowledge of 

clustering πC and without it. The category utility function can also be written as Goodman-Kruskal 

index for the contingency table between two partitions [22, 39]. The overall utility of the partition 

πC with respect to all the partitions in Π can be measured as the sum of pair-wise agreements: 

1

( , ) ( , )
H

C C i
i

U Uπ π π
=

Π =∑ . 
(13) 

Therefore, the best median partition should maximize the value of overall utility: 

best arg max ( , )C C

C

Uπ π
π

= Π . (14) 

Importantly, Mirkin [39] has proved that maximization of partition utility in Eq. (13) is equivalent 

to minimization of the square-error clustering criterion if the number of clusters K in target partition 

πC  is fixed. This is somewhat surprising in that the partition utility function in Eq. (14) uses only 

the between-attribute similarity measure of Eq.(12), while square-error criterion makes use of 

distances between objects and prototypes. Simple standardization of categorical labels in {π1,…,πH} 

effectively transforms them to quantitative features [39]. This allows us to compute real-valued 

distances and cluster centers. This transformation replaces the i-th partition πi assuming K(i) values 

by K(i) binary features, and standardizes each binary feature to a zero mean. In other words, for 

each object x we can compute the values of the new features ( )ijy xɶ , as following: 

( ) ( , ( )) ( )i i
ij j i jy x L x p Lδ π= −ɶ , for  j=1… K(i),  i=1…H . (15) 
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Hence, the solution of median partition problem in Eq. (4) can be approached by k-means clustering 

algorithm operating in the space of features ijyɶ  if the number of target clusters is predetermined. We 

use this heuristic as a part of empirical study of consensus functions. 

Let us consider the information-theoretic approach to the median partition problem. In this 

framework, the quality of the consensus partition πC is determined by the amount of information 

( , )CI π Π  it shares with the given partitions in Π. Strehl and Ghosh [47] suggest an objective 

function that is based on the classical Shannon definition of mutual information: 

best arg max ( , )C C

C

Iπ π
π

= Π , where 
1

( , ) ( , )
H

C C i
i

I Iπ π π
=

Π =∑ , (16) 

( )

1 1

( , )
( , ) ( , ) log

( ) ( )

iK iK
r ji

C i r j i
r j r j

p C L
I p C L

p C p L
π π

= =

 
=    ∑∑ . (17) 

Again, an optimal median partition can be found by solving this optimization problem. However, it 

is not clear how to directly use these equations in a search for consensus.  

We show that another information-theoretic definition of entropy will reduce the mutual 

information criterion to the category utility function discussed before. We proceed from the 

generalized entropy of degree s for a discrete probability distribution P=(p1,…,pn) [23]: 

1,0,1)12()(
1

11 ≠>


 −−= ∑
=

−− sspPH
n

i

s
i

ss  (18) 

Shannon’s entropy is the limit form of Eq.(18):  

21
1

lim ( ) log
n

s
i i

s
i

H P p p
→ =

= −∑ . (19) 

Generalized mutual information between σ and π can be defined as:  

( , ) ( ) ( | )s s s
C CI H Hπ π π π π= − . (20) 

Quadratic entropy (s=2) is of particular interest, since it is known to be closely related to 

classification error, when used in the probabilistic measure of inter-class distance. When s=2, 

generalized mutual information I(πC, πi) becomes: 
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Therefore, generalized mutual information gives the same consensus clustering criterion as category 

utility function in Eq. (13). Moreover, traditional Gini-index measure for attribute selection also 

follows from Eqs. (12) and (21). In light of Mirkin’s result, all these criteria are equivalent to 

within-cluster variance minimization, after simple label transformation. Quadratic mutual 

information, mixture model and other interesting consensus functions have been used in our 

comparative empirical study.  

5   Combination of Weak Clusterings 

The previous sections addressed the problem of clusterings combination, namely how to formulate 

the consensus function regardless of the nature of individual partitions in the combination. We now 

turn to the issue of generating different clusterings for the combination. There are several principal 

questions. Do we use the partitions produced by numerous clustering algorithms available in the 

literature?  Can we relax the requirements for the clustering components? There are several existing 

methods to provide diverse partitions: 

1. Use different clustering algorithms, e.g. k-means, mixture of Gaussians, spectral, single-link, 

etc. [47]. 

2. Exploit built-in randomness or different parameters of some algorithms, e.g. initializations and 

various values of k in k-means algorithm [35, 15, 16].  

3. Use many subsamples of the data set, such as bootstrap samples [10, 38]. 

These methods rely on the clustering algorithms, which are powerful on their own, and as such are 

computationally involved. We argue that it is possible to generate the partitions using weak, but less 

expensive, clustering algorithms and still achieve comparable or better performance. Certainly, the 
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key motivation is that the synergy of many such components will compensate for their weaknesses. 

We consider two simple clustering algorithms: 

1. Clustering of the data projected to a random subspace. In the simplest case, the data is 

projected on 1-dimensional subspace, a random line. The k-means algorithm clusters the 

projected data and gives a partition for the combination. 

2. Random splitting of data by hyperplanes. For example, a single random hyperplane would 

create a rather trivial clustering of d-dimensional data by cutting the hypervolume into two 

regions. 

We will show that both approaches are capable of producing high quality consensus clusterings in 

conjunction with a proper consensus function. 

 

5.1   Splitting by Random Hyperplanes 

Direct clustering by use of a random hyperplane illustrates how a reliable consensus emerges from 

low-informative components. The random splits approach pushes the notion of weak clustering 

almost to an extreme. The data set is cut by random hyperplanes dissecting the original volume of 

d-dimensional space containing the points. Points separated by the hyperplanes are declared to be in 

different clusters. Hence, the output clusters are convex. In this situation, a co-association consensus 

function is appropriate since the only information needed is whether the patterns are in the same 

cluster or not. Thus the contribution of a hyperplane partition to the co-association value for any 

pair of objects can be either 0 or 1. Finer resolutions of distance are possible by counting the 

number of hyperplanes separating the objects, but for simplicity we do not use it here. Consider a 

random line dissecting the classic 2-spiral data shown in Fig. 2(a). While any one such partition 

does little to reveal the true underlying clusters, analysis of the hyperplane generating mechanism 

shows how multiple such partitions can discover the true clusters.   
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Consider first the case of one-dimensional data. Splitting of objects in 1-dimensional space is 

done by a random threshold in R1. In general, if r thresholds are randomly selected, then (r+1) 

clusters are formed. It is easy to derive that, in 1-dimensional space, the probability of separating 

two objects whose inter-point distance is x is exactly: 

rLxP )1(1)split( −−= , (22) 

where L is the length of the interval containing the objects, and r threshold points are drawn at 

random from uniform distribution on this interval. Fig. 2(b) illustrates the dependence for L=1 and 

r=1,2,3,4. If a co-association matrix is used to combine H different partitions, then the expected 

value of co-association between two objects is ))split(1( PH − , that follows from the binomial 

distribution of the number of splits in H attempts. Therefore, the co-association values found after 

combining many random split partitions are generally expected to be a non-linear and a monotonic 

function of respective distances. The situation is similar for multidimensional data, however, the 

generation of random hyperplanes is a bit more complex. To generate a random hyperplane in d 

dimensions, we should first draw a random point in the multidimensional region that will serve as a 

point of origin. Then we randomly choose a unit normal vector u that defines the hyperplane. The 

two objects characterized by vectors p and q will be in the same cluster if (up)(uq)>0 and will be 

separated otherwise  (here ab denotes a scalar product of a and b). If r hyperplanes are generated, 

then the total probability that two objects remain in the same cluster is just the product of 
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Figure 2. Clustering by a random hyperplane: (a) An example of splitting 2-spiral data set by a random 
line. Points on the same side of the line are in the same cluster. (b) Probability of splitting two one-
dimensional objects for different number of random thresholds as a function of distance between objects. 
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probabilities that each of the hyperplanes does not split the objects. Thus we can expect that the law 

governing the co-association values is close to what is obtained in 1-dimensional space in Eq. (22). 

Let us compare the actual dependence of co-association values with the function in Eq. (22). 

Fig. 3 shows the results of experiments with 1000 different partitions by random splits of the Iris 

data set. The Iris data is 4-dimensional and contains 150 points. There are 11,175 pair-wise 

distances between the data items. For all the possible pairs of points, each plot in Fig. 3 shows the 

number of times a pair was split. The observed dependence of the inter-point “distances” derived 

from the co-association values vs. the true Euclidean distance, indeed, can be described by the 

function in Eq. (22).  

Clearly, the inter-point distances dictate the behavior of respective co-association values. The 

probability of a cut between any two given objects does not depend on the other objects in the data 

set. Therefore, we can conclude that any clustering algorithm that works well with the original inter-

point distances is also expected to work well with co-association values obtained from a 

combination of multiple partitions by random splits. However, this result is more of theoretical 

value when true distances are available, since they can be used directly instead of co-association 

values. It illustrates the main idea of the approach, namely that the synergy of multiple weak 

clusterings can be very effective. We present an empirical study of the clustering quality of this 

algorithm in the experimental section. 

 

5.2 Combination of Clusterings in Random Subspaces  
 

Random subspaces are an excellent source of clustering diversity that provides different views of 

the data.  Projective clustering is an active topic in data mining. For example, algorithms such as 

CLIQUE [2] and DOC [42] can discover both useful projections as well as data clusters. Here, 

however, we are only concerned with the use of random projections for the purpose of clustering 

combination. 
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Each random subspace can be of very low dimension and it is by itself somewhat uninformative. 

On the other hand, clustering in 1-dimensional space is computationally cheap and can be 

effectively performed by k-means algorithm. The main subroutine of k-means algorithm – distance 

computation – becomes d times faster in 1-dimensional space. The cost of projection is linear with 

respect to the sample size and number of dimensions O(Nd), and is less then the cost of one k-means 

iteration.  

The main idea of our approach is to generate multiple partitions by projecting the data on a 

random line. A fast and simple algorithm such as k-means clusters the projected data, and the 

resulting partition becomes a component in the combination. Afterwards, a chosen consensus 

function is applied to the components. We discuss and compare several consensus functions in the 

experimental section.  

It is instructive to consider a simple 2-dimensional data and one of its projections, as illustrated 

in Fig. 4(a). There are two natural clusters in the data. This data looks the same in any 1-

Figure 3. Dependence of distances derived from the co-association values vs. the actual Euclidean distance x 
for each possible pair of objects in Iris data. Co-association matrices were computed for different numbers of 

hyperplanes r =1,2,3,4. 
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dimensional projection, but the actual distribution of points is different in different clusters in the 

projected subspace. For example, Fig. 4(b) shows one possible histogram distribution of points in 1-

dimensional projection of this data. There are three identifiable modes, each having a clear majority 

of points from one of the two classes. One can expect that clustering by k-means algorithm will 

reliably separate at least a portion of the points from the outer ring cluster. It is easy to imagine that 

projection of the data in Fig. 4(a) on another random line would result in a different distribution of 

points and different label assignments, but for this particular data set it will always appear as a 

mixture of three bell-shaped components. Most probably, these modes will be identified as clusters 

by k-means algorithm. Thus each new 1-dimensional view correctly helps to group some data 

points. Accumulation of multiple views eventually should result in a correct combined clustering. 

The major steps for combining the clusterings using random 1-d projections are described by the 

following procedure: 

begin 

for i=1  to H // H is the number of clusterings in the combination 

generate a random vector u, s.t. | u|=1 

project all data points { xj }: {y j } ←{ uxj }, j=1…N 

cluster projections {y j }: π(i) ←k-means({y j }) 

end 

combine clusterings via a consensus function: σ ←{ π(i)},  i=1…H 
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(a) (b) 

Figure 4. Projecting data on a random line: (a) A sample data with two identifiable natural clusters 
and a line randomly selected for projection. (b) Histogram of the distribution of points resulting 
from data projection onto a random line.  
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return σ // consensus partition 

end  

The important parameter is the number of clusters in the component partition πi returned by k-

means algorithm at each iteration, i.e. the value of k. If the value of k is too large then the partitions 

{ πi} will overfit the data set which in turn may cause unreliability of the co-association values. Too 

small a number of clusters in {πi} may not be enough to capture the true structure of data set. In 

addition, if the number of clusterings in the combination is too small then the effective sample size 

for the estimates of distances from co-association values is also insufficient, resulting in a larger 

variance of the estimates. That is why the consensus functions based on the co-association values 

are more sensitive to the number of partitions in the combination (value of H) than consensus 

functions based on hypergraph algorithms.  

6   Empirical study  

The experiments were conducted with artificial and real-world datasets, where true natural clusters 

are known, to validate both accuracy and robustness of consensus via the mixture model. We 

explored the datasets using five different consensus functions. 

6.1 Datasets. Table 2 summarizes the details of the datasets. Five datasets of different nature have 

been used in the experiments. “Biochemical” and “Galaxy” data sets are described in [1] and [40], 

respectively.  

Table 2: Characteristics of the datasets.

No. of No. of No. of Total no. Av. k -means
features classes points/class  of points error (%)

Biochem. 7 2 2138-3404 5542 47.4

Galaxy 14 2 2082-2110 4192 21.1

2-spirals 2 2 100-100 200 43.5
Half-rings 2 2 100-300 400 25.6

Iris 4 3 50-50-50 150 15.1

Dataset
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We evaluated the performance of the evidence accumulation clustering algorithms by matching the 

detected and the known partitions of the datasets. The best possible matching of clusters provides a 

measure of performance expressed as the misassignment rate. To determine the clustering error, one 

needs to solve the correspondence problem between the labels of known and derived clusters. The 

optimal correspondence can be obtained using the Hungarian method for minimal weight bipartite 

matching problem with O(k3) complexity for k clusters. 

6.2 Selection of Parameters and Algorithms. Accuracy of the QMI and EM consensus algorithms 

has been compared to six other consensus functions:  

1. CSPA for partitioning of hypergraphs induced from the co-association values. Its complexity 

is O(N2) that leads to severe computational limitations. We did not apply this algorithm to 

“Galaxy” [40] and “Biochemical” [1] data. For the same reason, we did not use other co-

association methods, such as single-link clustering. The performance of these methods was 

already analyzed in [14,15]. 

2. HGPA for hypergraph partitioning. 

3. MCLA, that modifies HGPA via extended set of hyperedge operations and additional 

heuristics. 

4. Consensus functions operated on the co-association matrix, but with three different 

hierarchical clustering algorithms for obtaining the final partition, namely single-linkage, 

average-linkage, and complete-linkage. 

First three methods (CSPA, HGPA and MCLA) were introduced in [47] and their code is available 

at http://www.strehl.com.  

The k-means algorithm was used as a method of generating the partitions for the combination. 

Diversity of the partitions is ensured by the solutions obtained after a random initialization of the 

algorithm. The following parameters of the clustering ensemble are especially important: 

i. H – the number of combined clusterings. We varied this value in the range [5..50].  
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ii.  k – the number of clusters in the component clusterings {π1,…, πH} produced by k-means 

algorithm was taken in the range [2..10]. 

iii.  r – the number of hyperplanes used for obtaining clusterings {π1,…, πH} by random splitting 

algorithm. 

Both, the EM and QMI algorithms are susceptible to the presence of local minima of the 

objective functions. To reduce the risk of convergence to a lower quality solution, we used a simple 

heuristic afforded by low computational complexities of these algorithms. The final partition was 

picked from the results of three runs (with random initializations) according to the value of 

objective function. The highest value of the likelihood function served as a criterion for the EM 

algorithm and within-cluster variance is a criterion for the QMI algorithm. 

6.3 Experiments with Complete Partitions. Only main results for each of the datasets are 

presented in Tables 3-7 due to space limitations. The tables report the mean error rate (%) of 

clustering combination from 10 independent runs for relatively large biochemical and astronomical 

data sets and from 20 runs for the other smaller datasets. 

First observation is that none of the consensus functions is the absolute winner. Good 

performance was achieved by different combination algorithms across the values of parameters k 

and H. The EM algorithm slightly outperforms other algorithms for ensembles of smaller size, 

while MCLA is superior when number of clusterings H  > 20. However, ensembles of very large 

size are less important in practice. All co-association methods are usually unreliable with number of 
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Figure 5: “2 spirals” and “Half-rings” datasets are difficult for any centroid based clustering algorithms. 
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clusterings H < 50 and this is where we position the proposed EM algorithm. Both, EM and QMI 

consensus functions need to estimate at least kHM parameters. Therefore, accuracy degradation will 

inevitably occur with an increase in the number of partitions when sample size is fixed. However, 

there was no noticeable decrease in the accuracy of the EM algorithm in current experiments. The 

EM algorithm also should benefit from the datasets of large size due to the improved reliability of 

model parameter estimation.  

A valuable property of the EM consensus algorithm is its fast convergence rate. Mixture model 

parameter estimates nearly always converged in less than 10 iterations for all the datasets. 

Moreover, pattern assignments were typically settled in 4-6 iterations. 

Clustering combination accuracy also depends on the number of clusters M in the ensemble 

partitions, or more precisely, on its ratio to the target number of clusters, i.e. k/M. For example, the 

EM algorithm worked best with k=3 for Iris dataset, k=3,4 for “Galaxy” dataset and k=2 for “Half-

rings” data. These values of k are equal or slightly greater than the number of clusters in the 

combined partition. In contrast, accuracy of MCLA slightly improves with an increase in the 

number of clusters in the ensemble. Figure 7 shows the error as a function of k for different 

consensus functions for the galaxy data.  

It is also interesting to note that, as expected, the average error of consensus clustering was lower 

than average error of the k-means clusterings in the ensemble (Table 2) when k is chosen to be equal 

to the true number of clusters. Moreover, the clustering error obtained by EM and MCLA 

algorithms with k=4 for “Biochemistry” data [1] was the same as found by supervised classifiers 

applied to this dataset [45].   

6.4 Experiments with Incomplete Partitions. This set of experiments focused on the dependence 

of clustering accuracy on the number of patterns with missing cluster labels. As before, an ensemble 

of partitions was generated using the k-means algorithm. Then, we randomly deleted cluster labels 

for a fixed number of patterns in each of the partitions. The EM consensus algorithm was used on 
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such an ensemble. The number of missing labels in each partition was varied between 10% to 50% 

of the total number of patterns. The main results averaged over 10 independent runs are reported in 

Table 8 for “Galaxy” and “Biochemistry” datasets for various values of H and k. Also, a typical 

dependence of error on the number of patterns with missing data is shown for Iris data on Figure 6 

(H=5, k=3). 

One can note that combination accuracy decreases only insignificantly for “Biochemistry” data 

when up to 50% of labels are missing. This can be explained by the low inherent accuracy for this 

data, leaving little room for further degradation. For the “Galaxy” data, the accuracy drops by 

almost 10% when k=3,4. However, when just 10-20% of the cluster labels are missing, then there is 

just a small change in accuracy. Also, with different values of k, we see different sensitivity of the 

results to the missing labels. For example, with k=2, the accuracy drops by only slightly more than 

1%. Ensembles of larger size H=10 suffered less from missing data than ensembles of size H=5.  

6.5   Results of Random Subspaces Algorithm 

Let us start by demonstrating how the combination of clusterings in projected 1-dimensional 

subspaces outperforms the combination of clusterings in the original multidimensional space. Fig. 

8(a) shows the learning dynamics for Iris data and k=4, using average-link consensus function based 

H k EM QMI HGPA MCLA
5 2 18.9 19.0 50.0 18.9
5 3 11.6 13.0 50.0 13.5
5 4 11.3 13.0 50.0 11.7
5 5 13.9 18.0 50.0 14.3
5 7 14.5 21.9 50.0 15.6
5 10 13.4 31.1 50.0 15.4
10 2 18.8 18.8 50.0 18.8
10 3 14.9 15.0 50.0 14.8
10 4 11.6 11.1 50.0 12.0
10 5 14.5 13.0 50.0 13.6
15 2 18.8 18.8 50.0 18.8
15 3 14.0 13.3 50.0 14.8
15 4 11.7 11.5 50.0 11.6
15 5 12.9 11.5 50.0 12.9
20 2 18.8 18.9 50.0 18.8
20 3 12.8 11.7 50.0 14.3
20 4 11.0 10.8 50.0 11.5
20 5 16.2 12.1 50.0 12.3

Type of Consensus Function

Table 3: Mean error rate (%) for the “Galaxy” dataset. 

Figure 6: Consensus clustering error rate as a function 
of the number of missing labels in the ensemble for the 
Iris dataset, H=5, k=3. 
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on co-association values. Note that the number of clusters in each of the components {π1,…, πH} is 

set to k=4, and is different from the true number of clusters (=3). Clearly, each individual clustering 

in full multidimensional space is much stronger than any 1-dim partition, and therefore with only a 

small number of partitions (H<50) the combination of weaker partitions is not yet effective. 

However, for larger numbers of combined partitions (H>50), 1-dim projections together better 

reveal the true structure of the data. It is quite unexpected, since the k-means algorithm with k=3 

makes, on average, 19 mistakes in original 4-dim space and 25 mistakes in 1-dim random subspace. 

Moreover, clustering in the projected subspace is d times faster than in multidimensional space. 

Although, the cost of computing a consensus partition σ is the same in both cases. 

The results regarding the impact of value of k are reported in Fig. 8(b), which shows that there is 

a critical value of k for the Iris data set. This occurs when the average-linkage of co-association 

distances is used as a consensus function. In this case the value k=2 is not adequate to separate the 

true clusters. The role of the consensus function is illustrated in Fig. 9. Three consensus functions 

are compared on the Iris data set. They all use similarities from the co-association matrix but cluster 

the objects using three different criterion functions, namely, single link, average link and complete 

link. It is clear that the combination using single-link performs significantly worse than the other 

two consensus functions. This is expected since the three classes in Iris data have hyperellipsoidal 

shape. More results were obtained on “half-rings” and “2 spirals” data sets in Fig. 5, which are 

traditionally difficult for any partitional centroid-based algorithm. Table 9 reports the error rates for 

the “2 spirals” data using seven different consensus functions, different number of component 

partitions H = [5..500] and different number of clusters in each component k = 2,4,10. We omit 

similar results for “half-rings” data set under the same experimental conditions and some 

intermediate values of k due to space limitations.  As we see, the single-link consensus function 

performed the best and was able to identify both the ‘half-rings’ clusters as well as spirals. In 

contrast to the results for Iris data, average-link and complete-link consensus were not suitable for 

these data sets. 
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H k EM QMI CSPA HGPA MCLA
5 2 43.5 43.6 43.9 50.0 43.8
5 3 41.1 41.3 39.9 49.5 40.5
5 5 41.2 41.0 40.0 43.0 40.0
5 7 45.9 45.4 45.4 42.4 43.7
5 10 47.3 45.4 47.7 46.4 43.9
10 2 43.4 43.7 44.0 50.0 43.9
10 3 36.9 40.0 39.0 49.2 41.7
10 5 38.6 39.4 38.3 40.6 38.9
10 7 46.7 46.7 46.2 43.0 45.7
10 10 46.7 45.6 47.7 47.1 42.4
20 2 43.3 43.6 43.8 50.0 43.9
20 3 40.7 40.2 37.1 49.3 40.0
20 5 38.6 39.5 38.2 40.0 38.1
20 7 45.9 47.6 46.7 44.4 44.2
20 10 48.2 47.2 48.7 47.3 42.2

Type of Consensus Function

H k EM QMI CSPA HGPA MCLA
5 3 11.0 14.7 11.2 41.4 10.9
10 3 10.8 10.8 11.3 38.2 10.9
15 3 10.9 11.9 9.8 42.8 11.1
20 3 10.9 14.5 9.8 39.1 10.9
30 3 10.9 12.8 7.9 43.4 11.3
40 3 11.0 12.4 7.7 41.9 11.1
50 3 10.9 13.8 7.9 42.7 11.2

Type of Consensus Function

H k EM QMI CSPA HGPA MCLA
5 2 25.4 25.4 25.5 50.0 25.4
5 3 24.0 36.8 26.2 48.8 25.1
10 2 26.7 33.2 28.6 50.0 23.7
10 3 33.5 39.7 24.9 26.0 24.2
30 2 26.9 40.6 26.2 50.0 26.0
30 3 29.3 35.9 26.2 27.5 26.2
50 2 27.2 32.3 29.5 50.0 21.1
50 3 28.8 35.3 25.0 24.8 24.6

Type of Consensus Function
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Figure 7: Consensus error as a function of the number 
of clusters in the contributing partitions for Galaxy data 
and ensemble size H=20. 

Table 5: Mean error rate (%) for the “Half-rings” dataset. 

Table 6: Mean error rate (%) for the “2-spirals” dataset. 

Table 7: Mean error rate (%) for the Iris dataset. 

Table 4: Mean error rate (%) for the “Biochemistry” dataset. 

H k EM QMI MCLA
5 2 44.8 44.8 44.8
5 3 43.2 48.8 44.7
5 4 42.0 45.6 42.7
5 5 42.7 44.3 46.3

10 2 45.0 45.1 45.1
10 3 44.3 45.4 40.2
10 4 39.3 45.1 37.3
10 5 40.6 45.0 41.2
20 2 45.1 45.2 45.1
20 3 46.6 47.4 42.0
20 4 37.2 42.6 39.8
20 5 40.5 42.1 39.9
30 2 45.3 45.3 45.3
30 3 47.1 48.3 46.8
30 4 37.3 42.3 42.8
30 5 39.9 42.9 38.4
50 2 45.2 45.3 45.2
50 3 46.9 48.3 44.6
50 4 40.1 39.7 42.8
50 5 39.4 38.1 42.1

Type of Consensus Function

Table 8: Clustering error rate of EM algorithm as a 

function of the number of missing labels for the large 

datasets 
Missing "Galaxy" "Biochem."

H k labels (%) error (%) error (%)
5 2 10 18.81 45.18
5 2 20 18.94 44.73
5 2 30 19.05 45.08
5 2 40 19.44 45.64
5 2 50 19.86 46.23
5 3 10 12.95 43.79
5 3 20 13.78 43.89
5 3 30 14.92 45.67
5 3 40 19.58 47.88
5 3 50 23.31 48.41
5 4 10 11.56 43.10
5 4 20 11.98 43.59
5 4 30 14.36 44.50
5 4 40 17.34 45.12
5 4 50 24.47 45.62
10 2 10 18.87 45.14
10 2 20 18.85 45.26
10 2 30 18.86 45.28
10 2 40 18.93 45.13
10 2 50 19.85 45.35
10 3 10 13.44 44.97
10 3 20 14.46 45.20
10 3 30 14.69 47.91
10 3 40 14.40 47.21
10 3 50 15.65 46.92
10 4 10 11.06 39.15
10 4 20 11.17 37.81
10 4 30 11.32 40.41
10 4 40 15.07 37.78
10 4 50 16.46 41.56
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This observation supports the idea that the accuracy of the consensus functions based on co-

association values is sensitive to the choice of data set. In general, one can expect that average-link 

(single-link) consensus will be appropriate if standard average-link (single-link) agglomerative 

clustering works well for the data and vice versa. Moreover, none of the three hypergraph consensus 

functions could find a correct combined partition. This is somewhat surprising given that the 

hypergraph algorithms performed well on the Iris data. However, the Iris data is far less problematic 
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Figure 8. Performance of random subspaces algorithm on Iris data. (a) Number of errors by the 

combination of k-means partitions (k=4) in multidimensional space and projected to 1-d subspaces. 

Average-link consensus function was used. (b) Accuracy of projection algorithm as a function of the 

number of components and the number of clusters k in each component. 
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because one of the clusters is linearly separable, and the other classes are well described as a 

mixture of two multivariate normal distributions. 

Perfect separation of natural clusters was achieved with a large number of partitions in 

clustering combination (H > 200) and for values of k > 3 for “half-rings” and “2 spirals”. Again, it 

indicates that for each problem there is a critical value of resolution of component partitions that 

guarantees good clustering combination. This further supports the work of Fred and Jain [15,16] 

who showed that a random number of clusters in each partition ensures a greater diversity of 

components. We see that the minimal required value of resolution for the Iris data is k=3, for “half-

rings” it is k=2 and for “2 spirals” it is k=4. In general, the value of k should be larger than the true 

number of clusters. 

The number of partitions affects the relative performance of the consensus functions. With large 

values of H (>100), co-association consensus becomes stronger, while with small values of H it is 

preferable to use hypergraph algorithms or k-means median partition algorithm.  

Table 9. “2 Spirals” data experiments. Average error rate (% over 20 runs) of clustering combination using the 

random 1-d projections algorithm with different number of components, H, in combination, different 

resolutions of components k and seven types of consensus functions.  

 Type of Consensus Function 

H , # of k , # of clusters Co-association methods Hypergraph methods Median partition 
components in component Single Average Complete CSPA HGPA MCLA QMI 

link link link 
5 2 47.8 45.0 44.9 41.7 50.0 40.8 40.0 

10 2 48.0 44.3 43.1 41.6 50.0 40.4 40.0 
50 2 44.2 43.5 41.6 43.1 50.0 41.1 39.3 

100 2 46.2 43.9 42.1 46.2 50.0 43.2 42.6 
200 2 44.5 42.5 41.9 43.3 50.0 40.1 40.7 
500 2 41.6 43.5 39.6 46.4 50.0 44.0 43.3 

5 4 48.6 45.9 46.8 43.4 44.9 43.8 44.7 
10 4 47.4 47.5 48.7 44.1 43.8 42.6 44.0 
50 4 35.2 48.5 46.2 44.9 39.9 42.3 44.2 

100 4 29.5 49.0 47.0 44.2 39.2 39.5 42.9 
200 4 27.8 49.2 46.0 47.7 38.3 37.2 39.0 
500 4 4.4 49.5 44.0 48.1 39.4 45.0 43.4 

5 10 48.0 42.6 45.3 42.9 42.4 42.8 45.3 
10 10 44.7 44.9 44.7 42.4 42.6 42.8 44.2 
50 10 9.4 47.0 44.3 43.5 42.4 42.2 42.8 

100 10 0.9 46.8 47.4 41.8 41.1 42.3 44.2 
200 10 0.0 47.0 45.8 42.4 38.9 44.5 40.0 
500 10 0.0 47.3 43.4 43.3 35.2 44.8 37.4 
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It is interesting to compare the combined clustering accuracy with the accuracy of some of the 

classical clustering algorithms. For example, for Iris data the EM algorithm has the best average 

error rate of 6.17%. In our experiments, the best performers for Iris data were the hypergraph 

methods, with an accuracy as low as 3%, with H > 200 and k > 5. For the “half-rings” data, the best 

standard result is 5.25% error by the average-link algorithm, while the combined clustering using 

the single-link co-association algorithm achieved a 0% error with H > 200. Also, for the “2 spirals” 

data the clustering combination achieves 0% error, the same as by regular single-link clustering. 

Hence, with an appropriate choice of consensus function, clustering combination outperforms many 

standard clustering algorithms. However, the choice of a good consensus function is similar to the 

problem of choice of a good conventional clustering algorithm. Perhaps good alternative to 

guessing the right consensus function is simply to run all the available consensus functions and then 

pick the final consensus partition according to the partition utility criteria in Eq. (4) or Eq. (6). We 

hope to address this in future applications of the method.  

Another set of experiments was performed on the “Galaxy” dataset which has significantly 

larger number of samples N = 4192 and number of features d = 14. The task is to separate patterns 

of galaxies from stars. We used most difficult set of  “faint” objects from the original data [40]. 

True labels for the objects were provided manually by experts. Even though computation of 

component partitions is d times faster due to projection, the overall computational effort can be 
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data: (a) for different number of hyperplanes (b) for different consensus functions.  
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dominated by the complexity of computing the consensus partition. Quadratic computational 

complexity effectively prohibits co-association based consensus functions from being used on large 

data sets, due to O(N2) complexity of building co-association matrix for N objects. Therefore, for 

large datasets we do not use three hierarchical agglomerative methods as well as CSPA hypergraph 

algorithm by Strehl and Ghosh. The k-means algorithm for median partition via QMI is the most 

attractive in terms of speed with a complexity O(kNH). In addition, we also used two other 

hypergraph based consensus functions, since they worked fast in practice. Table 10 reports the 

achieved error rate using these consensus functions. We also limited the number of components in 

the combination to H=20 because of the large data size. The results show that k-means algorithm for 

median partition has the best performance. HGPA did not work well due to its bias toward balanced 

cluster sizes, as it also happened in the case of the “half-rings” data set. We see that the accuracy 

improves when the number of partitions and clusters increases.  

It is important to note that the average error rate of the standard k-means algorithm for the 

“Galaxy” data is about 20%, and the best known solution has an error rate of 18.6%. It is quite 

noticeable that k-means median partition algorithm and MCLA obtained much better partition with 

an error rate of only around 13% for k>3.   

 6.6   Results of Random Splitting Algorithm The same set of experiments was performed 

with clustering combination via splits by random hyperplanes as in section 5.1. Here we would like 

to emphasize only the most interesting observations, because the results in many details are close to 

what have been obtained by using random subspaces. There is a little difference in terms of absolute 

performance: the random hyperplanes algorithm is slightly better on “half-rings” data using single-

link consensus function, about the same on “2 spirals”, and worse on Iris data set. 

It is important to distinguish the number of clusters k in the component partition and the number 

of hyperplanes r, because hyperplanes intersect randomly and form varying number of clusters. For 

example, 3 lines can create anywhere between 4 and 7 distinct regions in a plane.  
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The results for the “2 spirals” data set also demonstrate the convergence of consensus clustering 

to a perfect solution when H reaches 500 and for the values of r = 2,…,5. See Fig. 10(a). A larger 

number of hyperplanes (r=5) improves the convergence. Fig 10(b) illustrates that the choice of 

consensus function is crucial for successful clustering. In the case of “2-spirals” data, only single-

link consensus is able to find correct clusters.  

7   Conclusion and Future Work 

This study extended previous research on clustering ensembles in several respects. First, we 

have introduced a unified representation for multiple clusterings and formulated the corresponding 

categorical clustering problem. Second, we have proposed a solution to the problem of clustering 

combination. A consensus clustering is derived from a solution of the maximum likelihood problem 

for a finite mixture model of the ensemble of partitions. Ensemble is modeled as a mixture of 

multivariate multinomial distributions in the space of cluster labels. Maximum likelihood problem 

is effectively solved using the EM algorithm. The EM-based consensus function is also capable of 

dealing with incomplete contributing partitions. Third, it is shown that another consensus function 

can be related to classical intra-class variance criterion using the generalized mutual information 

definition. Consensus solution based on quadratic mutual information can be efficiently found by k-

means algorithm in the space of specially transformed labels. Experimental results indicate good 

performance of the approach for several datasets and favorable comparison with other consensus 

Table 10. Average error rate (in %, over 20 runs) of combination clustering using random projections 

algorithm on “Galaxy/star” data set. 

 Type of Consensus 
Function H , # of k , # of cl. 

in 
Hypergraph methods Median partition 

component
s 

component HGPA MCLA   QMI 

5 2 49.7 20.0 20.4 
10 2 49.7 23.5 21.1 
20 2 49.7 21.0 18.0 
5 3 49.7 22.0 21.7 
10 3 49.7 17.7 13.7 
20 3 49.7 15.8 13.3 
5 4 49.7 19.7 16.7 
10 4 49.7 16.9 15.5 
20 4 49.7 14.1 13.2 
5 5 49.7 22.0 22.5 
10 5 49.7 17.7 17.4 
20 5 49.6 15.2 12.9 
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functions. Among the advantages of these algorithms are their low computational complexity and 

well-grounded statistical model. 

We have also considered combining weak clustering algorithms that use data projections and 

random data splits. A simple explanatory model is offered for the behavior of combination of such 

weak components. We have analyzed combination accuracy as a function of parameters, which 

control the power and resolution of component partitions as well as the learning dynamics vs. the 

number of clusterings involved. Empirical study compared the effectiveness of several consensus 

functions applied to weak partitions. 

It is interesting to continue the study of clustering combination in several directions: 1) design 

of effective search heuristics for consensus functions, 2) more precise and quantifiable notion of 

weak clustering, and 3) an improved understanding of the effect of component resolution for overall 

performance. This research can be extended in order to take into account non-independence of 

partitions in the ensemble. The consensus function presented here is equivalent to a certain kind of 

Latent Class Analysis, which offers established statistical approaches to measure and use 

dependencies (at least pair-wise) between variables. It is also interesting to consider a combination 

of partitions of different quality. In this case one needs to develop a consensus function that weights 

the contributions of different partitions in proportional to their strength. We hope to address these 

issues in our future work. 
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