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Abstract

We propose a new method for fitting mixture models
that performs component selection and does not require
external initialization. The novelty of our approach in-
cludes: a minimum message length (MML) type model se-
lection criterion; the inclusion of the criterion into the
expectation-maximization (EM) algorithm (which also in-
creases its ability to escape from local maxima); an initial-
ization strategy supported on the interpretation of EM as a
self-annealing algorithm.

1. Introduction

1.1. Finite Mixtures and EM

Finite mixtures (FM) are a flexible and powerful tool.
In pattern recognition, mixtures underlie formal approaches
to unsupervised learning (clustering) [1, 2]. FM are also
able to approximate arbitrary probability density functions
(pdf’s); this makes them well suited for modeling complex
class-conditional pdf’s in supervised learning [3].

Consider � i.i.d. samples of a (
�

-component) FM, ���� ���	��
����������������
� . The log-likelihood function is
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where ) � �8������� ) ( are the mixing probabilities, and
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The maximum likelihood (ML) estimate of the FM pa-
rameters, D � �	��
 �FE�GH"JIKEML �CNPO�Q � 0 � �	��
 ��� 3 can not be found

analytically. The same is true for the Bayesian MAP esti-
mate, D � ����
 �RE�GH"�IKEML �=NPO�Q�S � 0 � ���-
 ��� 3�T  �!#" /�0 � ���-
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some prior /�0 � �	��
 3 . The standard alternative is the EM al-

gorithm which, under mild conditions, converges to a local
maximum of
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EM is supported on the interpretation of � as incomplete

data [2, 4]. Here, the missing part is a set of labels X��� XY�	�Z
�8��������X[����
H� , indicating which component produced each

observation. The labels have the form X � % 
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The EM algorithm proceeds by alternatingly applying
two steps (until some convergence criterion is met):m E-step: Computes the conditional expectation of

�ng
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Since
� g

is linear in the missing \ � % 
( ’s, this step reduces
to the computation of their conditional expectations [2, 4].
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If we are looking for ML estimates, rather than MAP, �!W" /50 � ����
 3 is flat and is removed from Eq. (2).

1.2. Model Selection for Finite Mixtures

Model selection (i.e., choosing the optimal number of
components) is a central question in FM fitting. Most ap-
proaches to model selection for FM obtain a set of candidate



models (usually by EM), for a range of values of
�

, and then
select one according toD � �tE#G�"�I����� ��� 0 D � ����
 � � 3 � � � >W��������� � max �W� (3)

where
� 0 D � ����
 � � 3 is some model selection criterion. Sev-

eral of these methods (see references/comparisons in [5, 6])
have good model selection performance, but a major draw-
back remains: a whole set of

�
max candidate models has

to be obtained, and well-known problems associated with
EM emerge. (a) EM is highly dependent on initialization;
a common (time-consuming) solution uses several random
starts, and then chooses the best (highest

� 0 D � ����
 ��� 3 ) es-

timate [3, 4, 5]; other schemes initialize the } � % ~ oq
( vari-
ables using clustering methods [3, 4]. (b) EM may con-
verge to the boundary of the parameter space, i.e., one of
the ) ( ’s approaches zero and the corresponding compo-
nent becomes singular (unbounded likelihood); when the
value of

�
is larger than the optimal/true one, this may hap-

pen frequently.

2. Proposed Approach

2.1. The Proposed Criterion

The minimum description length (MDL, [7]) and mini-
mum message length (MML, [8, 6]) are two well known
criteria which have been successfully used for FM model
selection [5, 6]. However, the approach has been the one in
Eq. (3), suffering from the draw-backs mentioned above.

To bypass these difficulties, we propose a shift of ap-
proach: we use a selection criterion that can be embedded
in the steps of the EM algorithm, thus obtaining an inte-
grated model selection and estimation procedure.

Consider a prior /�0 � ����
 � � 3 � /50 � ����
 3 /�0 � 3 , where/50 � ���-
 3 is short for /50 � ����
 1 � 3 . Let /50 � 3 � >�� � max, for some�
max known to be larger than the true

�
. The simultaneous

selection of
�

and estimation of
� �	��
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 , is�� �	��
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where � 0 � ���-
 3 9 s S @��	� � NpO�Q � 0 � ���-
 ��� 3lU is the (expected)

Fisher information matrix, and 1 � 0 � ����
 3 1 its determinant.
Eq. (4) is an MML criterion (as used, e.g., in [6]), the only
difference being that we ignore the optimal quantizing lat-
tice constants, as is done in MDL [7].

Since � 0 � ����
 3 can not, in general, be obtained analyti-
cally, we replace it by the complete-data Fisher information
matrix � g 0 � ����
 3 9 s S @��	� � NpO�Q �hg 0 � ����
 ���J��X 3VU , which upper-

bounds1 � 0 � ����
 3 . This matrix has block-diagonal structure,� g 0 � �	��
 3 � � block-diag
� ) � � 0 � � 3 �����8��� ) � � 0 � � 3 ���b�J�

1In matrix sense, i.e., �������������! �"#�$���������% is positive definite [2].

where � 0 � ( 3 , for ] � >#�8������� � , is the Fisher matrix for a
single observation produced by the ] -th component, and� is the Fisher matrix of a multinomial distribution [2].

Since 1 � 1 � 0 ) � ) � {�{�{ ) � 3 ;=� (see, e.g., [9]), we have

 �!W" 1 � g 0 � ����
 3 1 � �' %�& �  �!#" 1 � 0 � % 3 1 T � 0'& T > 3  �!#" �
T 0!& @ > 3 �' %�& �  �!W" ) % � (5)

where & is the dimension of the
� % ’s.

For the prior, we model the parameters of different com-
ponents as independent and also independent from the mix-
ing probabilities: /50 � ���-
 3 � /�0 � � 3 {�{8{ /50 � � 3 /�0 ) � �8����� ) � 3 .
For each of these factors we adopt non-informative Jeffreys’
priors [9]: /�0 � % 3�(*) 1 � 0 � % 3 1 and /50 ) � ������� ) � 3	(+) 1 � 1 .
Inserting this prior and Eq. (5) into Eq. (4) we obtain�, �����.-0/21436587:9, NpO�Q.;=< > �' ?A@.B.C:D 3FE ?HGJI < G I> C:D 3FK#LNMPO , ������Q�RTSVU

(6)

2.2. Implementation via EM

From a Bayesian point of view, Eq. (6) includes, for
each

�
, a Dirichlet-type prior for the ) ( ’s, /50 � ) ( � 3W(X LHY � @ 0'& � � 3 B (  �!#" ) ( � (with negative parameters, thus

improper [9]). Dirichlet priors are conjugate to multinomial
likelihoods [9]; thus, in the M-step of EM, the ) ( ’s are up-
dated as (recall that ) ([Z _ and B ) ( �?> )

D) �poq�5��
( � IKE�L ; _ �.\ �' %�& � } � % ~ oq
( ] @ & � U
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The
� ( ’s are updated by simply maximizing the

r
-function

(Eq. (1)) with respect to them. Note that this M-step per-
forms component annihilation, thus being an explicit rule
for moving from a certain value of

�
to a smaller one. Ac-

cordingly, we propose to start with a large value of
�

, and let
EM, via Eq. (7), annihilate redundant components. More-
over, this new M-step provides increased robustness against
local minima. For example, configurations where several
components have similar parameters are problematic. Un-
der the criterion in Eq. (6), those configurations are unsta-
ble, with one of them eventually being annihilated. Another
key feature is that the boundary of the parameter space, for
each

�
, is no longer reachable: when one of the ) ( ’s be-

comes too small, it is annihilated and the algorithm jumps
to a smaller sub-space.
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As a final remark, it can be shown that B %  �!#" ) % (@�� KL
S � >�� � ��� � ) ( � U , the Kullback-Leibler divergence be-

tween a uniform distribution and the one specified by the) ( ’s. That is, we are favoring less uniform (lower entropy)
distributions, sharing the spirit of recent work in [10]. How-
ever, unlike [10], we have closed-form updates for the ) ( ’s
and explicit component annihilation (no additional tests).

3. The Self Annealing Behavior of EM

Deterministic annealing (DA) versions of EM (DAEM)
have been proposed as a means of overcoming its initializa-
tion dependence [11, 12]. DA is a fast surrogate of sim-
ulated annealing which has been successfully applied in
many problems, namely in clustering [13, 14].

The DA approach to
�

-means clustering is similar to EM
for Gaussian mixtures [13]; in fact,

�
-means clustering co-

incides with Gaussian mixture fitting when all
�

compo-
nents share a common covariance, � � (where � is the iden-
tity matrix), with vanishing � (called temperature) [13]. In
DA, the hard clusters are “softened” by starting with a high
temperature (high entropy assignments); � is then lowered
according to some cooling schedule until ��� _ . The
heuristic behind DA is that by forcing the entropy (softness)
of the assignments to decrease slowly, premature (hard) de-
cisions that may lead to poor local minima are avoided.

When estimating a finite mixture via EM, the entropy
(softness) of the assignments is given (at iteration � ) by

� 0 � 3 �|@ �' %�& � �'( & � } � %q~ oq
(  �!#" } � % ~ oq
( � (8)

DAEM schemes work by artificially forcing this entropy to
stay higher, and then controlling its (slow) decay [11, 12].

In another front, self annealing (SA) was described in
[15] as a means of obtaining DA algorithms without pre-
specified cooling schedules. Formally, given some cost
function s 0
	 3 , whose minimum is to be found with respect
to a vector parameter 	 , consider the iteration

	 �poq���Z
 �tE#G�"�I����	 � s 0
	 35T� 0�	 � 	 ��oq
 3�� � (9)

where � 0�	 � 	�� 3 Z _ , and � 0�	 � 	�� 3 �v_�� 	 � 	�� [15].
The key observation in [15] is: if 	 contains � , and we use
a “high � ” initialization, this iterative procedure exhibits
“self annealing”. That is, the temperature does not decrease
“too fast” (due to � 0 { � { 3 ); the cooling is self-controlled.

It is easy to show that EM iterations do have the form of
Eq. (9), with s 0 � ���-
 3 � @ � � � ���-
 ���5� and

� 0 � ����
 �ZD � �poq
����
 3 ��� KL u /�0 X 1 �J��D� �poq
����
 3 � /�0 X 1 �J� � ����
 3 z �
A related result is found in [16]. This � 0 { � { 3 function is a
relative entropy involving distributions of the missing vari-
ables which control the assignment of data points to mixture

components: as in DA and SA, also in EM it is the entropy
of this assignment that is being controlled. Observe also
that the function being minimized in each step is analogous
to a free energy (see [13, 14]), for unit temperature, with

the relative entropy � KL
S /50 X 1 �f� D� �poq
���-
 3 � /50 X 1 �J� � ���-
 3VU play-

ing the role of entropy. Accordingly, EM behaves like a SA
algorithm, and all that is required is high-entropy initializa-
tion; in the case of mixtures, this simply means } % ~ �(�� >�� � .

In summary, we propose: use EM with the M-step in
Eq. (7), starting with some

�
known to be larger than the

true/optimal one, and initialized with } % ~ �( � >�� � .

4. Examples

Fig. 1 shows 900 samples of a mixture used in [12]: three
equiprobable Gaussian components with means S _Y�8@ � U�� ,S _ �Y_ U�� , S _Y� � U�� , and equal covariances diag

� � �Y_ � � � . Start-
ing with

� � >8_ , initialization with } %q~ �( � >�� >2_ leads to
almost coincident components, as shown. Intermediate es-
timates (

� ��� , � ��� ) and the final result are presented.
We also plot the evolution of the criterion function (Eq. (6))
and of the entropy

� 0 � 3 (observe its controlled decay). In
conclusion, for this mixture, our method successfully over-
comes the initialization issue, like DAEM in [12]; however,
our method (i) does not require a cooling schedule, and (ii)
autonomously found the correct number of components.

In the next example we use Gaussian mixtures to model
class-conditional densities; this is called mixture discrim-
inant analysis (MDA) in [3]. The specific problem we
address is one with three (equiprobable) classes in 21-
dimensional space, studied in [3]. Each observation is de-
fined as ��� % 
J� S  � % 
� �������  � % 
��� U!� , with

 � % 
6 � " � % 
$# � 0&% 3 T 0 >n@'" � % 
 3 # � 0&% 3 T � � % 
6 � Class 1 �
 � % 
6 � " � % 
 # � 0&% 3 T 0 >n@'" � % 
 3 #)( 0&% 3 T � � % 
6 � Class 2 �
 � % 
6 � " � % 
$# � 0&% 3 T 0 >n@'" � % 
 3 # ( 0&% 3 T � � % 
6 � Class 3 �

where the "5� % 
 are i.i.d. uniform in 0 _Y�8> 3 , the � � % 
6 are i.i.d.
zero-mean unit-variance Gaussian, and the # % functions are
shifted triangular waveforms: # � 0&% 3 �tI E�L 0 _Y�+*=@ 1 % @ >#> 1 3 ,# � 0&% 3 � # � 0&% @-, 3 , and # ( 0.% 3 � # � 0.% T , 3 . Like in [3],
the mixtures representing the class-conditional densities are
fitted to sets of 300 samples (roughly 100 per class); the
resulting maximum a posteriori classifier is then tested on
samples of size 500. Table 1 reports error rates for four
methods: (a) MDA based on our new method, with diago-
nal covariances and initialized with

� �0/ ; (b) MDA with
standard EM, using 3 components per class, common co-
variance matrix, and initialized as described in [3] (i.e., the
k-means algorithm is run from 10 random starts and the
results used to initialize EM; the best final result is then
chosen); (c) linear discriminant analsyis (LDA – classes
modelled as Gaussian with different means but common co-
variance); and (d) quadratic discriminant analysis (QDA

3



– Gaussian classes with different means and different co-
variances). MDA based on our method has the best perfor-
mance; moreover, it does not suffer from the initialization
difficulties of standard EM and it does not require the user
to specify the number of components of each mixture.
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Figure 1. A 3-component Gaussian mixture.
The ellipses represent isodensity curves of
each component. The vertical dotted lines
signal the annihilation of one component.

Method Average (standard error)
MDA - new method ���������
	���� ������

MDA - EM ����������	���� ������
LDA ����������	���� ������
QDA ����������	���� ������

Table 1. Average error rates (over 10 simula-
tions) for the methods described in the text.

5. Conclusions

A new unsupervised algorithm for selection and estima-
tion of finite mixture models was proposed. It is based on
a MML-type criterion and on the observation that EM ex-
hibits self annealing. Examples have shown the good per-
formance of the approach. Future work includes further ex-
perimental evaluation (e.g., on non-Gaussian mixtures).

References

[1] A. Jain and R. Dubes, Algorithms for Clustering Data. En-
glewood Cliffs, N. J.: Prentice Hall, 1988.

[2] D. Titterington, A. Smith, and U. Makov, Statistical Analy-
sis of Finite Mixture Distributions. Chichester (U.K.): John
Wiley & Sons, 1985.

[3] T. Hastie and R. Tibshirani, “Discriminant analysis by Gaus-
sian mixtures,” Journal of the Royal Statistical Society (B),
vol. 58, pp. 155–176, 1996.

[4] G. McLachlan and T. Krishnan, The EM Algorithm and Ex-
tensions. New York: John Wiley & Sons, 1997.

[5] S. Roberts, D. Husmeier, I. Rezek, and W. Penny, “Bayesian
approaches to Gaussian mixture modelling,” IEEE Trans. on
Patt. Anal. and Mach. Intell., vol. 20, pp. 1133-1142, 1998.

[6] J. Oliver, R. Baxter, and C. Wallace, “Unsupervised learn-
ing using MML,” in Proc. of the 13th Int. Conf. on Machine
Learning, (San Francisco), pp. 364–372, 1996.

[7] J. Rissanen, Stochastic Complexity in Stastistical Inquiry.
Singapore: World Scientific, 1989.

[8] C. Wallace and P. Freeman, “Estimation and inference via
compact coding,” Journal of the Royal Statistical Society (B),
vol. 49, no. 3, pp. 241–252, 1987.

[9] J. Bernardo and A. Smith, Bayesian Theory. Chichester, UK:
J. Wiley & Sons, 1994.

[10] M. Brand, “Structure learning in conditional probability
models via entropic prior and parameter extinction,” Neural
Computation, vol. 11, pp. 1155–1182, 1999.

[11] M. Kloppenburg and P. Tavan, “Deterministic annealing for
density estimation by multivariate normal mixtures,” Physi-
cal Review E, vol. 55, pp. R2089–R2092, 1997.

[12] N. Ueda and R. Nakano, “Deterministic annealing EM algo-
rithm,” Neural Networks, vol. 11, pp. 271–282, 1998.

[13] K. Rose, “Deterministic annealing for clustering, compres-
sion, classification, regression, and related optimization
problems,” Proc. of the IEEE, vol. 86, pp. 2210–2239, 1998.

[14] T. Hofmann and J. Buhmann, “Pairwise data clustering by
deterministic annealing,” IEEE Trans. on Patt. Anal. and
Mach. Intell., vol. 19, pp. 1–14, January 1997.

[15] A. Rangarajan, “Self annealing,” in Energy Minimization
Methods in Comp. Vis. and Patt. Rec. (M. Pellilo and E. Han-
cock, eds.), pp. 229–244, Springer Verlag, 1997.

[16] R. Neal and G. Hinton, “A view of the EM algorithm that jus-
tifies incremental, sparse, and other variants,” in Learning in
Graphical Models (M.I. Jordan, ed.), pp. 355–368, Kluwer,
1998.

4


