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Abstract

We propose a new method for fitting mixture models
that performs component selection and does not require
external initialization. The novelty of our approach in-
cludes: a minimum message length (MML) type model se-
lection criterion; the inclusion of the criterion into the
expectation-maximization (EM) algorithm (which also in-
creases its ability to escape from local maxima); an initial-
ization strategy supported on the interpretation of EM as a
self-annealing algorithm.

1. Introduction

1.1. Finite Mixturesand EM

Finite mixtures (FM) are a flexible and powerful tool.
In pattern recognition, mixtures underlie formal approaches
to unsupervised learning (clustering) [1, 2]. FM are also
able to approximate arbitrary probability density functions
(pdf’s); this makes them well suited for modeling complex
class-conditional pdf’s in supervised learning [3].

Consider n i.i.d. samples of a (k-component) FM, y =
{y™M), ..., y™}. The log-likelihood function is

components

logH Za p(y z)|45’

z—lm 1

L(0),y)

mlxturep(y(f |0(k))

where aq, ..., o, are the mixing probabilities, and H(k) =
{01,...,019,&1,...,0%,1}; notice that a, =1 Zm 1 Om.
The maximum likelihood (ML) estimate of the FM pa-
rameters, 5(k)= argmaxg L(B),y) can not be found
analytiAcaIIy. The same is true for the Bayesian MAP esti-
mate, @)= argmaxa(k)[L(B(k),y) + log p(@1))], given
some prior p(@ ). The standard alternative is the EM al-
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gorithm which, under mild conditions, converges to a local
maximum of L(0x),y) or [L (8(x),y) + logp(8(x))] [4].
EM is supported on the interpretation of y as incomplete
data [2, 4]. Here, the missing part is a set of labels z =
{zM) ...,z(™}, indicating which component produced each
observation. The labels have the form z( = [2{%) .. 2();
if y(9 was produced by the m-th component, then z%) =1

and 25 = 0, for p # m. The (complete) log-likelihood
(i.e., if complete data x = {y, z} was observed) is [2, 4]

ZZ 29 log [a p(y?16,)] .

i=1 m=1

The EM algorithm proceeds by alternatingly applying
two steps (until some convergence criterion is met):
e E-step: Computes the conditional expectation of L.,

. 1 At
given y and the current parameter estimate OEk)),
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Since L. is linear in the missing z,(,? ’s, this step reduces
to the computation of their conditional expectations [2, 4].
Since the 24’s are binary, E[z\)|] = Pr[z) = 1|-]; then,
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o M-step: Updates the parameter estimates according to
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If we are looking for ML estimates, rather than MAP,
log p(8 1)) is flat and is removed from Eq. (2).

1.2. Model Selection for Finite Mixtures

Model selection (i.e., choosing the optimal number of
components) is a central question in FM fitting. Most ap-
proaches to model selection for FM obtain a set of candidate



models (usually by EM), for a range of values of &, and then
select one according to

k= arg mln{C(B(k), k), k=1, ..., knax}, (3)
where C(B(k),k) is some model selection criterion. Sev-
eral of these methods (see references/comparisons in [5, 6])
have good model selection performance, but a major draw-
back remains: a whole set of kna candidate models has
to be obtained, and well-known problems associated with
EM emerge. (a) EM is highly dependent on initialization;
a common (time-consuming) solution uses several random

starts, and then chooses the best (highest L(a(k),y)) es-

timate [3, 4, 5]; other schemes initialize the wﬁ,’{t) vari-
ables using clustering methods [3, 4]. (b) EM may con-
verge to the boundary of the parameter space, i.e., one of
the a,,’s approaches zero and the corresponding compo-
nent becomes singular (unbounded likelihood); when the
value of & is larger than the optimal/true one, this may hap-
pen frequently.

2. Proposed Approach

2.1. The Proposed Criterion

The minimum description length (MDL, [7]) and mini-
mum message length (MML, [8, 6]) are two well known
criteria which have been successfully used for FM model
selection [5, 6]. However, the approach has been the one in
Eqg. (3), suffering from the draw-backs mentioned above.

To bypass these difficulties, we propose a shift of ap-
proach: we use a selection criterion that can be embedded
in the steps of the EM algorithm, thus obtaining an inte-
grated model selection and estimation procedure.

Consider a prior p(@x),k) = p(@w))p(k), where
P(O(ry) is short for p(O ) |k). Let p(k) = 1/kmax, for some
kmax known to be larger than the true k. The simultaneous
selection of k and estimation of 8, denoted 0/(;) is
0/(;) = arg min {Lg |I(0(k))| —

5 L(Oy,y) — 10gp(9(k))}
k, O k)

(4)
where I(0()) = E[—Vza(k)L(O(k),y)] is the (expected)
Fisher information matrix, and [I(8 )| its determinant.
Eq. (4) is an MML criterion (as used, e.g., in [6]), the only
difference being that we ignore the optimal quantizing lat-
tice constants, as is done in MDL [7].

Since 1(0()) can not, in general, be obtained analyti-
cally, we replace it by the complete-data Fisher information
matrix L. (0(x)) = E[—V20 Lc(O1),y,2)], which upper-

bounds* I(6 ). This matrlx has block-diagonal structure,
I.(6(x)) = n block-diag {1 1(61), . . ., axI(6%), M},

1In matrix sense, i.e, I.(0(x)) — 1(O()) is positive defi nite [2].

where I(8,,), for m = 1,..., k, is the Fisher matrix for a

single observation produced by the m-th component, and

M is the Fisher matrix of a multinomial distribution [2].
Since [M| = (a1az -~ ag) 7! (see, e.g., [9]), we have

Zlog [I(6
N — 1)2 log a;,
i=1

where N is the dimension of the 6;’s.

For the prior, we model the parameters of different com-
ponents as independent and also independent from the mix-
ing probabilities: p(@)) = p(61)---p(Or)p(aa, .., ag).
For each of these factors we adopt non- mformatlve Jeffreys’

log|L.(8))| = )|+ k(N +1)logn

(5)

priors [9]: p(8:) oc /|1(6;)| and p(au, .., ax) ox /|M].
Inserting this prior and Eq. (5) into Eq. (4) we obtain
O(k) = arg mm { Z log a; + +k logn —L(Ox),y)
(k)
(6)

2.2. Implementation via EM

From a Bayesian point of view, Eq. (6) includes, for
each k, a Dirichlet-type prior for the a,,’s, p({am})
exp{—(N/2) Y, log ., } (with negative parameters, thus
improper [9]). Dirichlet priors are conjugate to multinomial
likelihoods [9]; thus, in the M-step of EM, the «,,,’s are up-
dated as (recall that a,, > 0and Y a,, = 1)

e )

i=1
The 8,,,’s are updated by simply maximizing the -function
(Eq. (1)) with respect to them. Note that this M-step per-
forms component annihilation, thus being an explicit rule
for moving from a certain value of k£ to a smaller one. Ac-
cordingly, we propose to start with a large value of &, and let
EM, via Eq. (7), annihilate redundant components. More-
over, this new M -step provides increased robustness against
local minima. For example, configurations where several
components have similar parameters are problematic. Un-
der the criterion in Eq. (6), those configurations are unsta-
ble, with one of them eventually being annihilated. Another
key feature is that the boundary of the parameter space, for
each k, is no longer reachable: when one of the a,,’s be-
comes too small, it is annihilated and the algorithm jumps
to a smaller sub-space.

()



As a final remark, it can be shown that 3", loga;
=D [{1/k} || {am}], the Kullback-Leibler divergence be-
tween a uniform distribution and the one specified by the
ay,’s. That is, we are favoring less uniform (lower entropy)
distributions, sharing the spirit of recent work in [10]. How-
ever, unlike [10], we have closed-form updates for the a;,,’s
and explicit component annihilation (no additional tests).

3. The Self Annealing Behavior of EM

Deterministic annealing (DA) versions of EM (DAEM)
have been proposed as a means of overcoming its initializa-
tion dependence [11, 12]. DA is a fast surrogate of sim-
ulated annealing which has been successfully applied in
many problems, namely in clustering [13, 14].

The DA approach to k-means clustering is similar to EM
for Gaussian mixtures [13]; in fact, k-means clustering co-
incides with Gaussian mixture fitting when all k£ compo-
nents share a common covariance, T'I (where I is the iden-
tity matrix), with vanishing 7" (called temperature) [13]. In
DA, the hard clusters are “softened” by starting with a high
temperature (high entropy assignments); 7" is then lowered
according to some cooling schedule until 7 — 0. The
heuristic behind DA is that by forcing the entropy (softness)
of the assignments to decrease slowly, premature (hard) de-
cisions that may lead to poor local minima are avoided.

When estimating a finite mixture via EM, the entropy
(softness) of the assignments is given (at iteration t) by

n k

=-2_ 2w’

i=1 m=1

log w(z 2 (8)

DAEM schemes work by artificially forcing this entropy to
stay higher, and then controlling its (slow) decay [11, 12].

In another front, self annealing (SA) was described in
[15] as a means of obtaining DA algorithms without pre-
specified cooling schedules. Formally, given some cost
function E(¢), whose minimum is to be found with respect
to a vector parameter ¢, consider the iteration

(t+1) — argmin { B(¢) + d , ) , 9
¢ = argmin {B(9) +d6,6")},

where d(¢, ¢') > 0, and d(¢,¢") = 0 & ¢ = ¢ [15].
The key observation in [15] is: if ¢ contains T', and we use
a “high T initialization, this iterative procedure exhibits
“self annealing”. That is, the temperature does not decrease
“too fast” (due to d(-, -)); the cooling is self-controlled.
It is easy to show that EM iterations do have the form of
Eq. (9), with E(B(k)) = —L(O(k),y) and
() (1)
d(g(k);g(k)) = Du P(Z|y70(k)) I P(Z|y70(k)) .
A related result is found in [16]. This d(-,-) function is a
relative entropy involving distributions of the missing vari-
ables which control the assignment of data points to mixture

components: as in DA and SA, also in EM it is the entropy
of this assignment that is being controlled. Observe also
that the function being minimized in each step is analogous
to a free energy (see [13, 14]), for unit temperature, with

the relative entropy D [p(zly, 8(,)) || p(zly, Ox))] play-
ing the role of entropy. Accordingly, EM behaves like a SA
algorithm, and all that is required is high-entropy initializa-
tion; in the case of mixtures, this simply means w9 ~ 1/k.
In summary, we propose: use EM with the M -step in
Eq. (7), starting with some & known to be larger than the
true/optimal one, and initialized with w2 ~ 1/k.

4. Examples

Fig. 1 shows 900 samples of a mixture used in [12]: three
equiprobable Gaussian components with means [0, —2]7,
[0, 0]7, [0, 2], and equal covariances diag{2, 0.2}. Start-
ing with k& = 10, initialization with w%? ~ 1/10 leads to
almost coincident components, as shown. Intermediate es-
timates (k = 8, ¥ = 5) and the final result are presented.
We also plot the evolution of the criterion function (Eg. (6))
and of the entropy H (t) (observe its controlled decay). In
conclusion, for this mixture, our method successfully over-
comes the initialization issue, like DAEM in [12]; however,
our method (i) does not require a cooling schedule, and (ii)
autonomously found the correct number of components.

In the next example we use Gaussian mixtures to model
class-conditional densities; this is called mixture discrim-
inant analysis (MDA) in [3]. The specific problem we
address is one with three (equiprobable) classes in 21-
dimensional space, studied in [3]. Each observation is de-

fined as y@ = [y8?, ...4$9)7 with

v = uOh () + (1= uD)hy(j) +nl?, Class 1,
yg) = uDhy(§) + (1 —uD)hy(j) +nl?, Class2,
v = uDho(j) + (1 — uP)hg(j) + 1Y, Class 3,

where the «(¥ are i.i.d. uniform in (0, 1), the nJ are i.i.d.
zero-mean unit-variance Gaussian, and the h; functions are
shifted triangular waveforms: h; (j) = max(0,6—|j—11|),
ha(j) = hi(j — 4), and hs(j) = h1(j + 4). Like in [3],
the mixtures representing the class-conditional densities are
fitted to sets of 300 samples (roughly 100 per class); the
resulting maximum a posteriori classifier is then tested on
samples of size 500. Table 1 reports error rates for four
methods: (a) MDA based on our new method, with diago-
nal covariances and initialized with & = 7; (b) MDA with
standard EM, using 3 components per class, common co-
variance matrix, and initialized as described in [3] (i.e., the
k-means algorithm is run from 10 random starts and the
results used to initialize EM; the best final result is then
chosen); (c) linear discriminant analsyis (LDA — classes
modelled as Gaussian with different means but common co-
variance); and (d) quadratic discriminant analysis (QDA



— Gaussian classes with different means and different co-
variances). MDA based on our method has the best perfor-
mance; moreover, it does not suffer from the initialization
difficulties of standard EM and it does not require the user
to specify the number of components of each mixture.

stInitializagian

Entro
2500 Py

2000
1500
1000

500

3500 =

50 100 150 200 250 300 350 50 100 150 200 250 300 350
1terations 1terations

/

Figure 1. A 3-component Gaussian mixture.
The ellipses represent isodensity curves of
each component. The vertical dotted lines
signal the annihilation of one component.

Method Average (standard error)
MDA - new method 0.158 (0.005)
MDA - EM 0.167 (0.005)
LDA 0.195 (0.008)
QDA 0.211 (0.008)

Table 1. Average error rates (over 10 simula-
tions) for the methods described in the text.

5. Conclusions

A new unsupervised algorithm for selection and estima-
tion of finite mixture models was proposed. It is based on
a MML-type criterion and on the observation that EM ex-
hibits self annealing. Examples have shown the good per-
formance of the approach. Future work includes further ex-
perimental evaluation (e.g., on non-Gaussian mixtures).
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